python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法(实例代码)
作者:奔跑的Yancy 发布时间:2022-03-31 11:23:43
标签:python,跟踪,算法,kcf
单目标跟踪:
直接调用opencv中封装的tracker即可。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 5 17:50:47 2020
第四章 kcf跟踪
@author: youxinlin
"""
import cv2
from items import MessageItem
import time
import numpy as np
'''
监视者模块,负责入侵检测,目标跟踪
'''
class WatchDog(object):
#入侵检测者模块,用于入侵检测
def __init__(self,frame=None):
#运动检测器构造函数
self._background = None
if frame is not None:
self._background = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
self.es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
def isWorking(self):
#运动检测器是否工作
return self._background is not None
def startWorking(self,frame):
#运动检测器开始工作
if frame is not None:
self._background = cv2.GaussianBlur(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (21, 21), 0)
def stopWorking(self):
#运动检测器结束工作
self._background = None
def analyze(self,frame):
#运动检测
if frame is None or self._background is None:
return
sample_frame = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
diff = cv2.absdiff(self._background,sample_frame)
diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
diff = cv2.dilate(diff, self.es, iterations=2)
image, cnts, hierarchy = cv2.findContours(diff.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
coordinate = []
bigC = None
bigMulti = 0
for c in cnts:
if cv2.contourArea(c) < 1500:
continue
(x,y,w,h) = cv2.boundingRect(c)
if w * h > bigMulti:
bigMulti = w * h
bigC = ((x,y),(x+w,y+h))
if bigC:
cv2.rectangle(frame, bigC[0],bigC[1], (255,0,0), 2, 1)
coordinate.append(bigC)
message = {"coord":coordinate}
message['msg'] = None
return MessageItem(frame,message)
class Tracker(object):
'''
追踪者模块,用于追踪指定目标
'''
def __init__(self,tracker_type = "BOOSTING",draw_coord = True):
'''
初始化 * 种类
'''
#获得opencv版本
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
self.tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
self.tracker_type = tracker_type
self.isWorking = False
self.draw_coord = draw_coord
#构造 *
if int(minor_ver) < 3:
self.tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
self.tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
self.tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
self.tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
self.tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
self.tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
self.tracker = cv2.TrackerGOTURN_create()
def initWorking(self,frame,box):
'''
* 工作初始化
frame:初始化追踪画面
box:追踪的区域
'''
if not self.tracker:
raise Exception(" * 未初始化")
status = self.tracker.init(frame,box)
if not status:
raise Exception(" * 工作初始化失败")
self.coord = box
self.isWorking = True
def track(self,frame):
'''
开启追踪
'''
message = None
if self.isWorking:
status,self.coord = self.tracker.update(frame)
if status:
message = {"coord":[((int(self.coord[0]), int(self.coord[1])),(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}
if self.draw_coord:
p1 = (int(self.coord[0]), int(self.coord[1]))
p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
message['msg'] = "is tracking"
return MessageItem(frame,message)
class ObjectTracker(object):
def __init__(self,dataSet):
self.cascade = cv2.CascadeClassifier(dataSet)
def track(self,frame):
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = self.cascade.detectMultiScale(gray,1.03,5)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
return frame
if __name__ == '__main__' :
# tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
tracker = Tracker(tracker_type="KCF")
# video = cv2.VideoCapture(0)
# video = cv2.VideoCapture("complex1.mov")
video = cv2.VideoCapture(r"/Users/youxinlin/Desktop/video_data/complex1.MOV")
ok, frame = video.read()
bbox = cv2.selectROI(frame, False)
tracker.initWorking(frame,bbox)
while True:
_,frame = video.read();
if(_):
item = tracker.track(frame);
cv2.imshow("track",item.getFrame())
k = cv2.waitKey(1) & 0xff
if k == 27:
break
附带items.py,放在同个文件夹下:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 5 17:51:04 2020
@author: youxinlin
"""
import json
from utils import IOUtil
'''
信息封装类
'''
class MessageItem(object):
#用于封装信息的类,包含图片和其他信息
def __init__(self,frame,message):
self._frame = frame
self._message = message
def getFrame(self):
#图片信息
return self._frame
def getMessage(self):
#文字信息,json格式
return self._message
def getBase64Frame(self):
#返回base64格式的图片,将BGR图像转化为RGB图像
jepg = IOUtil.array_to_bytes(self._frame[...,::-1])
return IOUtil.bytes_to_base64(jepg)
def getBase64FrameByte(self):
#返回base64格式图片的bytes
return bytes(self.getBase64Frame())
def getJson(self):
#获得json数据格式
dicdata = {"frame":self.getBase64Frame().decode(),"message":self.getMessage()}
return json.dumps(dicdata)
def getBinaryFrame(self):
return IOUtil.array_to_bytes(self._frame[...,::-1])
utils.py:也放在同一个文件夹下。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 5 17:51:40 2020
@author: youxinlin
"""
import time
import numpy
import base64
import os
import logging
import sys
from PIL import Image
from io import BytesIO
#工具类
class IOUtil(object):
#流操作工具类
@staticmethod
def array_to_bytes(pic,formatter="jpeg",quality=70):
'''
静态方法,将numpy数组转化二进制流
:param pic: numpy数组
:param format: 图片格式
:param quality:压缩比,压缩比越高,产生的二进制数据越短
:return:
'''
stream = BytesIO()
picture = Image.fromarray(pic)
picture.save(stream,format=formatter,quality=quality)
jepg = stream.getvalue()
stream.close()
return jepg
@staticmethod
def bytes_to_base64(byte):
'''
静态方法,bytes转base64编码
:param byte:
:return:
'''
return base64.b64encode(byte)
@staticmethod
def transport_rgb(frame):
'''
将bgr图像转化为rgb图像,或者将rgb图像转化为bgr图像
'''
return frame[...,::-1]
@staticmethod
def byte_to_package(bytes,cmd,var=1):
'''
将每一帧的图片流的二进制数据进行分包
:param byte: 二进制文件
:param cmd:命令
:return:
'''
head = [ver,len(byte),cmd]
headPack = struct.pack("!3I", *head)
senddata = headPack+byte
return senddata
@staticmethod
def mkdir(filePath):
'''
创建文件夹
'''
if not os.path.exists(filePath):
os.mkdir(filePath)
@staticmethod
def countCenter(box):
'''
计算一个矩形的中心
'''
return (int(abs(box[0][0] - box[1][0])*0.5) + box[0][0],int(abs(box[0][1] - box[1][1])*0.5) +box[0][1])
@staticmethod
def countBox(center):
'''
根据两个点计算出,x,y,c,r
'''
return (center[0][0],center[0][1],center[1][0]-center[0][0],center[1][1]-center[0][1])
@staticmethod
def getImageFileName():
return time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+'.png'
多目标跟踪:
和单目标差不多,改用MultiTracker_create()
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 5 18:02:33 2020
多目标跟踪
@author: youxinlin
"""import numpy as np
import cv2
import sys
'''
if len(sys.argv) != 2:
print('Input video name is missing')
exit()
'''
print('Select multiple tracking targets')
cv2.namedWindow("tracking")
camera = cv2.VideoCapture(r"/Users/youxinlin/Desktop/video_data/complex6.MOV")
#camera = cv2.VideoCapture(0)
tracker = cv2.MultiTracker_create() #多目标跟踪
a= cv2.Tracker_c
init_once = False
ok, image=camera.read()
if not ok:
print('Failed to read video')
exit()
bbox1 = cv2.selectROI('tracking', image)
bbox2 = cv2.selectROI('tracking', image)
bbox3 = cv2.selectROI('tracking', image)
while camera.isOpened():
ok, image=camera.read()
if not ok:
print ('no image to read')
break
if not init_once:
ok = tracker.add(cv2.TrackerKCF_create(),image,bbox1)
ok = tracker.add(cv2.TrackerKCF_create( ),image, bbox2)
ok = tracker.add(cv2.TrackerKCF_create(),image, bbox3)
init_once = True
ok, boxes = tracker.update(image)
for newbox in boxes:
p1 = (int(newbox[0]), int(newbox[1]))
p2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3]))
cv2.rectangle(image, p1, p2, (0,0,255))
cv2.imshow('tracking', image)
k = cv2.waitKey(1)
if k == 27 : break # esc pressed
多尺度检测的KCF、自定义所用特征的KCF
在一些场景下,不想使用默认的hog特征跟踪,或需要对比不同特征的跟踪效果,那么封装好的方法似乎不可用,需要可以自己撸一波kcf的代码,从而使用自己设定的特征。
总结
以上所述是小编给大家介绍的python实现单目标、多目标、多尺度、自定义特征的KCF跟踪算法网站的支持!如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
来源:https://blog.csdn.net/lyxleft/article/details/103847454


猜你喜欢
- 从 gif 直观地感受一下效果我有大量 url 需要访问,但是有些 url 会超时为了避免超时,设置driver.set_page_load
- 代码如下,另存为asp文件,请传到你的服务器上就可以了马上测一下<%Response.Expires = 0Response.Expi
- 方法一: 代码如下:id=request.form("checkbox") id=Split(id,"
- 本文实例讲述了微信小程序基于slider组件动态修改标签透明度的方法。分享给大家供大家参考,具体如下:1、效果展示2、关键代码index.w
- jetbrains IDE的插件加载不出来场景Win10、IDEA 2020.2、电脑配置了HTTP/HTTPS/socks梯子代理。想要给
- 为什么要用jsonpath就跟为什么要用xpath一样,jsonpath的设计灵感来源于xpath。一个强大的json数据提取工具。让用户不
- pandas有groupby分组函数和sort_values排序函数,但是如何对dataframe分组之后排序呢?In [70]: df =
- 今天继续给大家介绍MySQL相关知识,本文主要内容是MySQL外键约束详解。一、MySQL外键约束作用外键约束(Foreign Key)即数
- 现在只有山东、北京、上海等发达地区有考Python的这个举动,其他地区暂时还没有。首先,Python类似于c++,Python是一种面向对象
- 我开发过几个采集程序,也研究过很多采集程序代码,所以对采集程序的原理还算是稍微有些了解。先说一下采集原理:采集程序的主要步骤如下: 一、获取
- Python 在命令行解析方面给出了类似的几个选择:自己解析, 自给自足(batteries-included)的方式,以及大量的
- 在之前的一篇文章我们介绍了《如何向PHP数组中头部和尾部添加元素》既然有添加元素,那么就有删除元素,今天这篇文章详细介绍如何删除数组中的头部
- 起步在 《分布式任务队列Celery使用说明》 中介绍了在 Python 中使用 Celery 来实验异步任务和定时任务功能。本文介绍如何在
- 1.Quiz有如下一个例子:package mainimport ("encoding/json""fmt&q
- 这样的问题是因为 数据库字符集,表字符集,字段字符集都设为:gbk_chinese_ci 注意数据库连接串里面的 Stmt=Set Name
- 斐波那契数列(Fibonacci)最早由印度数学家Gopala提出,而第一个真正研究斐波那契数列的是意大利数学家 Leonardo Fibo
- 错误号 错误信息5 &n
- 这几天在重温微信小游戏的飞机大战,玩着玩着就在思考人生了,这飞机大战怎么就可以做的那么好,操作简单,简单上手。帮助蹲厕族、YP族、饭圈女孩在
- pyfinance简介在查找如何使用Python实现滚动回归时,发现一个很有用的量化金融包——pyfinance。顾名思义,pyfinanc
- 往mysql数据库中插入数据。以前常用INSERT INTO 表名 (列名1,列名2…) VALUES(列值1,列值2);如果在PHP程序中