pyecharts绘制各种数据可视化图表案例附效果+代码
作者:"wink 发布时间:2022-07-08 08:30:03
标签:pyecharts,绘制,数据,可视化,图表
1、pyecharts绘制饼图(显示百分比)
# 导入模块
from pyecharts import options as opts
from pyecharts.charts import Pie
#准备数据
label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子','迪奥','阿玛尼','香奈儿']
values = [300,300,300,300,44,300,300,300]
# 自定义函数
def pie_base():
c = (
Pie()
.add("",[list(z) for z in zip(label,values)])
.set_global_opts(title_opts = opts.TitleOpts(title="口红品牌分析"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比
)
return c
# 调用自定义函数生成render.html
pie_base().render()
2、pyecharts绘制柱状图
#导入模块
from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
#准备数据
l1=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
l2=[100,200,300,400,500,400,300]
bar = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(l1)
.add_yaxis("柱状图标签", l2)
.set_global_opts(title_opts=opts.TitleOpts(title="柱状图-基本示例", subtitle="副标题"))
)
# 生成render.html
bar.render()
3、pyecharts绘制折线图
#导入模块
import pyecharts.options as opts
from pyecharts.charts import Line
#准备数据
x=['星期一','星期二','星期三','星期四','星期五','星期七','星期日']
y1=[100,200,300,400,100,400,300]
y2=[200,300,200,100,200,300,400]
line=(
Line()
.add_xaxis(xaxis_data=x)
.add_yaxis(series_name="y1线",y_axis=y1,symbol="arrow",is_symbol_show=True)
.add_yaxis(series_name="y2线",y_axis=y2)
.set_global_opts(title_opts=opts.TitleOpts(title="Line-双折线图"))
)
#生成render.html
line.render()
4、pyecharts绘制柱形折线组合图
from pyecharts import options as opts
from pyecharts.charts import Bar, Grid, Line
#x轴的值为列表,包含每个月份
x_data = ["{}月".format(i) for i in range(1, 13)]
bar = (
Bar()
.add_xaxis(x_data)
#第一个y轴的值、标签、颜色
.add_yaxis(
"降雨量",
[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 68.6, 22.0, 6.6, 4.3],
yaxis_index=0,
color="#5793f3",
)
# #第二个y轴的值、标签、颜色
# .add_yaxis(
# "蒸发量",
# [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
# yaxis_index=1,
# color="#5793f3",
# )
#右纵坐标
.extend_axis(
yaxis=opts.AxisOpts(
name="降雨量",
type_="value",
min_=0,
max_=250,
position="right",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
)
)
#左纵坐标
.extend_axis(
yaxis=opts.AxisOpts(
type_="value",
name="温度",
min_=0,
max_=25,
position="left",
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#d14a61")
),
axislabel_opts=opts.LabelOpts(formatter="{value} °C"),
splitline_opts=opts.SplitLineOpts(
is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
),
)
)
.set_global_opts(
yaxis_opts=opts.AxisOpts(
name="降雨量",
min_=0,
max_=250,
position="right",
offset=0,
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(color="#5793f3")
),
axislabel_opts=opts.LabelOpts(formatter="{value} ml"),
),
title_opts=opts.TitleOpts(title="Grid-多 Y 轴示例"),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
)
)
line = (
Line()
.add_xaxis(x_data)
.add_yaxis(
"平均温度",
[2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2],
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render()
5、pyecharts绘制散点图
# 导入模块
from pyecharts import options as opts
from pyecharts.charts import Scatter
# 设置销售数据
week = ["周一","周二","周三","周四","周五","周六","周日"]
c =Scatter() # 散点图绘制
c.add_xaxis(week)
c.add_yaxis("商家A",[80,65,46,37,57,68,90])
c.set_global_opts(title_opts=opts.TitleOpts(title="一周的销售额(万元)")) # 设置图表标题
c.render()
6、pyecharts绘制玫瑰图
from pyecharts import options as opts
from pyecharts.charts import Pie
label=['Mac口红','Tom Ford口红','圣罗兰','纪梵希','花西子']
values = [100,200,250,350,400]
c = (
Pie()
.add(
"",
[list(z) for z in zip(label,values)],
radius=["30%", "75%"],
center=["50%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="标题"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{c} {d}%")) # 值得一提的是,{d}%为百分比
.render("玫瑰图.html")
)
7、pyecharts绘制词云图
# 导入WordCloud及配置模块
from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
# 添加词频数据
words = [
("Sam S Club", 10000),
("Macys", 6181),
("Amy Schumer", 4386),
("Jurassic World", 4055),
("Charter Communications", 2467),
("Chick Fil A", 2244),
("Planet Fitness", 1868),
("Pitch Perfect", 1484),
("Express", 1112),
("Home", 865),
("Johnny Depp", 847),
("Lena Dunham", 582),
("Lewis Hamilton", 555),
("KXAN", 550),
("Mary Ellen Mark", 462),
("Farrah Abraham", 366),
("Rita Ora", 360),
("Serena Williams", 282),
("NCAA baseball tournament", 273),
("Point Break", 265),
]
# WordCloud模块,链式调用配置,最终生成html文件
c = (
WordCloud()
.add("", words, word_size_range=[20, 100], shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title="词云图"))
.render("wordcloud_diamond.html")
)
8、pyecharts绘制雷达图
from pyecharts import options as opts
from pyecharts.charts import Radar
v1 = [[8.5,50000,15000,8000,13000,5000]]
v2 = [[8.1,42000,13000,7000,15000,7000]]
def radar_base() ->Radar:
c = (
Radar()
.add_schema(
schema=[
opts.RadarIndicatorItem(name='KDA',max_=10),
opts.RadarIndicatorItem(name='输出', max_=60000),
opts.RadarIndicatorItem(name='经济', max_=20000),
opts.RadarIndicatorItem(name='生存', max_=10000),
opts.RadarIndicatorItem(name='推进', max_=20000),
opts.RadarIndicatorItem(name='刷野', max_=10000),
]
)
.add(
'射手',v1,
color='blue',
#通过颜色属性 将其填充
areastyle_opts=opts.AreaStyleOpts(
opacity=0.5,
color='blue'
),
)
.add(
'法师',v2,
color='red',
areastyle_opts=opts.AreaStyleOpts(
opacity=0.5,
color='red'
),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title='英雄成长属性对比'))
)
return c
radar_base().render("雷达图.html")
9、pyecharts绘制散点图
from pyecharts import options as opts
from pyecharts.charts import Scatter
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker
c = (
Scatter()
.add_xaxis(Faker.choose())
.add_yaxis(
"商家A",
[list(z) for z in zip(Faker.values(), Faker.choose())],
label_opts=opts.LabelOpts(
formatter=JsCode(
"function(params){return params.value[1] +' : '+ params.value[2];}"
)
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="Scatter散点图-多维度数据"),
tooltip_opts=opts.TooltipOpts(
formatter=JsCode(
"function (params) {return params.name + ' : ' + params.value[2];}"
)
),
visualmap_opts=opts.VisualMapOpts(
type_="color", max_=150, min_=20, dimension=1
),
)
.render("散点图.html")
)
10、pyecharts绘制嵌套饼图
import pyecharts.options as opts
from pyecharts.charts import Pie
from pyecharts.globals import ThemeType
list1 = [300,55,400,110]
attr1 = ["学习", "运动","休息", "娱乐"]
list2 = [40,160,45,35,80,400,35,60]
attr2 = ["阅读", "上课", "运动", "讨论", "编程", "睡觉","听音乐", "玩手机"]
inner_data_pair = [list(z) for z in zip(attr1, list1)]
outer_data_pair = [list(z) for z in zip(attr2, list2)]
(
Pie(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add(
series_name="时长占比",
data_pair=inner_data_pair,
radius=[0, "30%"],
label_opts=opts.LabelOpts(position="inner"),
)
.add(
series_name="时长占比",
radius=["40%", "55%"],
data_pair=outer_data_pair,
label_opts=opts.LabelOpts(
position="outside",
formatter="{a|{a}}{abg|}\n{hr|}\n {b|{b}: }{c} {per|{d}%} ",
background_color="#eee",
border_color="#aaa",
border_width=1,
border_radius=4,
rich={
"a": {"color": "#999", "lineHeight": 22, "align": "center"},
"abg": {
"backgroundColor": "#e3e3e3",
"width": "100%",
"align": "right",
"height": 22,
"borderRadius": [4, 4, 0, 0],
},
"hr": {
"borderColor": "#aaa",
"width": "100%",
"borderWidth": 0.5,
"height": 0,
},
"b": {"fontSize": 16, "lineHeight": 33},
"per": {
"color": "#eee",
"backgroundColor": "#334455",
"padding": [2, 4],
"borderRadius": 2,
},
},
),
)
.set_global_opts(legend_opts=opts.LegendOpts(pos_left="left", orient="vertical"))
.set_series_opts(
tooltip_opts=opts.TooltipOpts(
trigger="item", formatter="{a} <br/>{b}: {c} ({d}%)"
)
)
.render("嵌套饼图.html")
)
11、pyecharts绘制中国地图
#导入模块
from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 设置商家A所存在的相关省份,并设置初始数量为0
ultraman = [
['四川', 0],
['台湾', 0],
['新疆', 0],
['江西', 0],
['河南', 0],
['辽宁', 0],
['青海', 0],
['福建', 0],
['西藏', 0]
]
# 设置商家B存在的相关省份,并设置初始数量为0
monster = [
['广东', 0],
['北京', 0],
['上海', 0],
['台湾', 0],
['湖南', 0],
['浙江', 0],
['甘肃', 0],
['黑龙江', 0],
['江苏', 0]
]
def data_filling(array):
'''
作用:给数组数据填充随机数
'''
for i in array:
# 随机生成1到1000的随机数
i[1] = random.randint(1,1000)
data_filling(ultraman)
data_filling(monster)
def create_china_map():
(
Map()
.add(
series_name="商家A",
data_pair=ultraman,
maptype="china",
# 是否默认选中,默认为True
is_selected=True,
# 是否启用鼠标滚轮缩放和拖动平移,默认为True
is_roam=True,
# 是否显示图形标记,默认为True
is_map_symbol_show=False,
# 图元样式配置
itemstyle_opts={
# 常规显示
"normal": {"areaColor": "white", "borderColor": "red"},
# 强调颜色
"emphasis": {"areaColor": "pink"}
}
)
.add(
series_name="商家B",
data_pair=monster,
maptype="china",
)
# 全局配置项
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title="中国地图"),
# 设置标准显示
visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False)
)
# 系列配置项
.set_series_opts(
# 标签名称显示,默认为True
label_opts=opts.LabelOpts(is_show=True, color="blue")
)
# 生成本地html文件
.render("中国地图.html")
)
#调用自定义函数
create_china_map()
12、pyecharts绘制世界地图
from pyecharts import options as opts
from pyecharts.charts import Map
import random
# 设置商家A所存在的相关国家,并设置初始数量为0
ultraman = [
['Russia', 0],
['China', 0],
['United States', 0],
['Australia', 0]
]
# 设置商家B存在的相关国家,并设置初始数量为0
monster = [
['India', 0],
['Canada', 0],
['France', 0],
['Brazil', 0]
]
def data_filling(array):
for i in array:
# 随机生成1到1000的随机数
i[1] = random.randint(1,1000)
print(i)
data_filling(ultraman)
data_filling(monster)
def create_world_map():
'''
作用:生成世界地图
'''
( # 大小设置
Map()
.add(
series_name="商家A",
data_pair=ultraman,
maptype="world",
)
.add(
series_name="商家B",
data_pair=monster,
maptype="world",
)
# 全局配置项
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title="世界地图"),
# 设置标准显示
visualmap_opts=opts.VisualMapOpts(max_=1000, is_piecewise=False),
)
# 系列配置项
.set_series_opts(
# 标签名称显示,默认为True
label_opts=opts.LabelOpts(is_show=False, color="blue")
)
# 生成本地html文件
.render("世界地图.html")
)
create_world_map()
来源:https://blog.csdn.net/weixin_61370021/article/details/125134159


猜你喜欢
- Dean Edwards 最近有篇文章很精彩,忍不住在这里翻译下。-- Split --很多 Javascript 框架都提供了自定义事件(
- 加法 select sysdate,add_months(sysdate,12) from dual; --加1年 select sysda
- 本文的完整代码在github.com/hdt3213/godis/redis/client通常 TCP 客户端的通信模式都是阻塞式的: 客户
- 序章yield item这行代码会产出一个值,提供给next()的调用方;此外还会做出让步,暂停执行生成器,让调用方继续工作,知道需要使用另
- 1.获取当前时间的两种方法:import datetime,timenow = time.strftime("%Y-%m-%d %
- 前提:安装libxml2 libxstl官方网站:http://xmlsoft.org/XSLT/index.html安装包下载:http:
- 我想从文件读数据的话,要比直接从数据库快一些吧(个人观点),昨天测试了读出6000条新闻,读数据库用了23579毫秒,读文件只用了123毫秒
- 定时任务:1、 线程睡眠函数 sleep() ——粗暴!一直占有 CPU 资源,导致后续操作无法执行2、 threading.Timer(1
- 一、背景希望根据企业名称查询其经纬度,所在的省份、城市等信息。直接将企业名称传给百度地图提供的API,得到的经纬度是非常不准确的,因此希望获
- 一、模板图像处理(1)灰度图、二值图转化template = cv2.imread('C:/Users/bwy/Desktop/nu
- 本文由 kouyubo 整理到现在为止,只有一些已经工作的特性,他们中的一些如下:圆角从web2.0开始,开始流行使用圆角,如果你不使用圆角
- 本文为大家分享了opencv图片模糊和锐化的具体实现代码,供大家参考,具体内容如下一、模糊操作#!/usr/bin/env python#
- SQLite支持多种编程语言的开发调用:C, C++ , PHP, Perl, Java, C# ,Python, Ruby等。本篇先介绍P
- 背景学习 Python 的话,仅掌握标准库是远不够的,有很多好用的第三方库我们也需要用到的,比如,由鼎鼎大名的 K 神开发的爬虫必不可少的
- 业务说明:此示例脚本作用,包含方法和逻辑:图像读取,图片尺寸读取,重置图片大小,图片等比缩放,图片拼接,图片覆盖与堆叠(子母图)图片展示:单
- 写在前面对于经常需要开发企业管理后台的前端开发来说,必不可少的需要使用表格对于数据进行操作,在对于现有项目进行代码优化时,封装一些公共的Ho
- 只是做笔记,没什么!! --创建测试表 CREATE TABLE [dbo].[Student]( [ID] [int] IDENTITY(
- 本文实例讲述了Python排序搜索基本算法之堆排序。分享给大家供大家参考,具体如下:堆是一种完全二叉树,堆排序是一种树形选择排序,利用了大顶
- 一、决策树原理决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。 决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点
- 为了更好的理解邮件发送功能的实现,要先了解邮件发送系统的大致流程。首先 电子邮件之间的相互发送接受就像 邮局邮件发送