浅析Python自带性能强悍的标准库itertools
作者:Python_xiaowu 发布时间:2022-04-28 12:45:19
前言
可迭代对象就像密闭容器里的水,有货倒不出
itertools是python内置的标准模块,提供了很多简洁又高效的专用功能,使用得当能够极大的简化代码行数,同时所有方法都是实现了生成器函数,这就意味着极大的节省内存。
itertools提供的功能主要分为三大块,以最新版本的3.10为例:
对可迭代对象无限迭代,无限输出
对可迭代对象有限迭代
对可迭代对象排列组合
方法如下:
导入包
>>> from iteratortools import *
无限迭代
iteratortools.count(start=0, step=1)
数值生成器,可以指定起始位置和步长,并且步长可以为浮点数。无限输出,一直累加,在例子中需要边睡眠1s边输出。
>>> import time
>>> iterator = count(4, 0.5)
>>> for i in iterator:
... print(i)
... time.sleep(1)
...
4
4.5
5.0
5.5
6.0
6.5
7.0
7.5
iteratortools.cycle(iteratorable)
无限循环取出可迭代对象里的元素
>>> a = cycle("ABCD")
>>> import time
>>> for i in a:
... print(i)
... time.sleep(1)
...
A
B
C
D
A
B
C
D
iteratortools.repeat(object[, times])
不断重复输出整个object,如果指定了重复次数,则输出指定次数,否则将无限重复。
>>> iterator = repeat('hello world', 10)
>>>
>>> for i in iterator:
... print(i)
...
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world
hello world
有了这个神器,对输出10次hello world这种问题又有一种新解法
有限迭代
iteratortools.accumulate(iteratorable[, func, *, initial=None])
返回对列表中元素逐项的操作,操作有:
累加,返回累加到每一项的列表
累乘,返回累乘到每一项的列表
最小值,返回到当前项的最小值
最大值,返回到当前项的最大值
>>> [2, 4, 8, 1, 3, 5]
[2, 4, 8, 1, 3, 5]
>>> arr = [2, 4, 8, 1, 3, 5]
>>>
>>> add = accumulate(arr)
>>>
>>> list(add)
[2, 6, 14, 15, 18, 23]
>>>
>>> max = accumulate(arr, max)
>>> list(max)
[2, 4, 8, 8, 8, 8]
>>>
>>> import operator
>>> mul = accumulate(arr, operator.mul)
>>> list(mul)
[2, 8, 64, 64, 192, 960]
>>>
>>> min = accumulate(arr, min)
>>> list(min)
[2, 2, 2, 1, 1, 1]
iteratortools.chain(*iteratorables)
将多个可迭代对象构建成一个新的可迭代对象,统一返回。类似于将多个对象链成一条串
>>> iterator = chain([1,2,3],['a','b','c'],(5,6,7))
>>> list(iterator)
[1, 2, 3, 'a', 'b', 'c', 5, 6, 7]
优点:可以将多个可迭代对象整合成一个,避免逐个取值
chain.from_iteratorable(iteratorable)
将一个迭代对象中将所有元素类似于chain一样,统一返回。
>>> chain.from_iteratorable(['abc','def'])
<iteratortools.chain object at 0x1083ae460>
>>> iterator = chain.from_iteratorable(['abc','def'])
>>> list(iterator)
['a', 'b', 'c', 'd', 'e', 'f']
iteratortools.compress(data, selectors)
按照真值表筛选元素
>>> arr = [1,2,3,4]
>>> selectors = [1,0,1,0]
>>>
>>> iterator = compress(arr, selectors)
>>>
>>> list(iterator)
[1, 3]
iteratortools.dropwhile(predicate, iteratorable)
按照条件筛选,丢弃掉第一次不符合条件时之前的所有元素
>>> arr = [1,2,3,2,1,2,1]
>>> iterator = dropwhile(lambda x: x<3, arr)
>>> list(iterator)
[3, 2, 1, 2, 1]
iteratortools.takewhile(predicate, iteratorable)
根据predicate条件筛选可迭代对象中的元素,只要元素为真就返回,第一次遇到不符合的条件就退出。
按照条件筛选,丢弃第一次遇到不符合条件之后的元素。行为类似于上一个dropwhile,区别在于丢弃的选择不同。
iteratortools.filterfalse(predicate, iteratorable)
保留不符合条件的元素,返回迭代器
>>> arr = [1,2,3,4,5]
>>> iterator = filterfalse(lambda x:x<3, arr)
>>> list(iterator)
[3, 4, 5]
iteratortools.groupby(iteratorable, key=None)
按照指定的条件分类。输出条件和符合条件的元素
>>> iterator = groupby(arr, lambda x: x>3)
>>> for condition ,numbers in iterator:
... print(condition, list(numbers))
...
False [1, 2, 3]
True [4, 5]
iteratortools.islice(iteratorable, start, stop[, step])
对迭代器进行切片,老版本中不能指定start和stop以及步长,新版本可以。
>>> iterator = count()
>>> slice_iterator = islice(iterator, 10, 20, 2)
>>> list(slice_iterator)
[10, 12, 14, 16, 18]
iteratortools.starmap(function, iteratorable)
将function作用于可迭代对象上,类似于map函数
iteratortools.tee(iteratorable, n=2)
从一个可迭代对象中返回 n 个独立的迭代器
>>> iterator = tee(arr)
>>> for i in iterator:
... print(type(i), list(i))
...
<class 'iteratortools._tee'> [1, 2, 3, 4, 5]
<class 'iteratortools._tee'> [1, 2, 3, 4, 5]
iteratortools.zip_longest(*iteratorables, fillvalue=None)
创建一个迭代器,从每个可迭代对象中收集元素。如果可迭代对象的长度未对齐,将根据 fillvalue 填充缺失值。
迭代持续到耗光最长的可迭代对象。大致相当于:
>>> iterator = zip_longest("ABCD", "xy", fillvalue="-")
>>> list(iterator)
[('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')]
排列组合迭代
iteratortools.product(*iteratorables, repeat=1)
生成多个可迭代对象的笛卡尔积
大致相当于生成器表达式中的嵌套循环。例如, product(A, B) 和 ((x,y) for x in A for y in B) 返回结果一样。
>>> iterator = product("123", "abc")
>>> list(iterator)
[('1', 'a'), ('1', 'b'), ('1', 'c'), ('2', 'a'), ('2', 'b'), ('2', 'c'), ('3', 'a'), ('3', 'b'), ('3', 'c')]
将可选参数 repeat 设定为要重复的次数。例如,product(A, repeat=4) 和 product(A, A, A, A) 是一样的
iteratortools.permutations(iteratorable, r=None)
由 iteratorable 元素生成长度为 r 的排列。元素的排列,类似于给一个[1,2,3],选取其中两个元素,一共有多少种组合方法?不要求元素排列之后的位置。
>>> iter = permutations([1,2,3], r=3)
>>> list(iterator)
[(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)]
这个方法能够完美解决算法中的全排列问题,简直是量身定做。如果早知道这么简单,当年考算法也不会。。,哎
可参见leetcode46题: 力扣
iteratortools.combinations(iteratorable, r)
返回由输入 iteratorable 中元素组成长度为 r 的子序列。元素不可重复使用。子序列是要求元素在排列之后和之前的相对位置不变的。1,2,3中3在1的后面,子序列中3也一定在1的后面。
>>> iterator = combinations([1,2,3,4], r = 3)
>>> list(iterator)
[(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
>>> iterator = combinations([1], r = 3)
>>> list(iterator)
[]
这个方法可以曲线解决组合总数问题
力扣
iteratortools.combinations_with_replacement(iteratorable, r)
返回由输入 iteratorable 中元素组成的长度为 r 的子序列,允许每个元素可重复出现
>>> iter = combinations_with_replacement([1,2,3,4], r=2)
>>> list(iter)
[(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)]
>>> iterator = combinations_with_replacement([1], r=3)
>>> list(iterator)
[(1, 1, 1)]
来源:https://blog.csdn.net/Python_xiaowu/article/details/121908672


猜你喜欢
- 问题你需要将一个Python对象序列化为一个字节流,以便将它保存到一个文件、存储到数据库或者通过网络传输它。解决方案对于序列化最普遍的做法就
- 在读取dict的key和value时,如果key不存在,就会触发KeyError错误,如:t = { 'a':
- 查询mysql表是否被损坏命令,如下:# CHECK TABLE 表名mysql的长期使用,肯定会出现一些问题,一般情况下mysql表无法访
- 这是17年的第一篇博文,话说这天又是产品同学跑过来问我说:hi,lenny,你看现在市面上流行各种装逼H5,随便输入点名字啥的就给我生成房产
- 1.无效数据的概念无效数据是指不符合数据收集目的或数据收集标准的数据。这些数据可能来自于不准确的测量、缺失值、错误标注、虚假的数据源或其他问
- python对函数库的引用方式1、import <库名> 例如:import turtle 如果需要使用库函数中的函数,需要使用
- Crossday Discuz! Board(简称 Discuz!)是北京康盛新创科技有限责任公司推出的一套通用的社区论坛软件系统。自200
- 运行一段程序,警告:service/mysqlconfig.go:63::error: golang.guazi-corp.com/tool
- 如果你经常使用python开发GUI程序的话,那么就知道,有时你需要很长时间来执行一个任务。当然,如果你使用命令行程序来做的话,你回非常惊讶
- <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN&
- vue中实现拖拽效果,供大家参考,具体内容如下首先要搞明白分清clientY pageY screenY layerY offsetY的区别
- 进度条是当我们处理冗长的任务时使用的控件,它是以动画的形式让用户知道该任务正在取得进展。在PyQt5中的进度条对应组件是QProgressB
- 概述相信我们经常会遇到这样的场景:想要了解双十一天猫购买化妆品的人员中平均消费额度是多少(这可能有利于对商品价格区间的定位);或者不同年龄段
- 本文针对SQL 2016 正式版安装过程进行梳理总结,帮助大家顺利安装SQL 2016,具体内容如下1.点击全新安装2.接着就是下一步,下一
- 目前防采集的方法有很多种,先介绍一下常见防采集策略方法和它的弊端及采集对策: 一、判断一个IP在一定时间内对本站页面的访问次数,如果明显超过
- 登录流程:实例化一个driver,然后driver.get()发送请求最重要的:切换iframe子框架,因为豆瓣的网页中的登录那部分是一个i
- 本文目的是创建一个MySQL的image,并且在新创建出来的容器里自动启动MySQL服务接受外部连接步骤:1. 首先创建一个目录并在目录下创
- 如下所示:1、计算总帧数import osimport cv2video_cap = cv2.VideoCapture('ffmpe
- 1. 为什么要有转义?ASCII 表中一共有 128 个字符。这里面有我们非常熟悉的字母、数字、标点符号,这些都可以从我们的键盘中输出。除此
- MySQL是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。M