网络编程
位置:首页>> 网络编程>> Python编程>> 计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

作者:菜鸟川  发布时间:2022-08-24 22:34:00 

标签:pytorch,标准化,数据集,均值,方差

pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:


if 'coco' in args.dataset:
 mean_vals = [0.471, 0.448, 0.408]
 std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
 mean_vals = [0.485, 0.456, 0.406]
 std_vals = [0.229, 0.224, 0.225]

计算自己数据集图像像素的均值方差:


import numpy as np
import cv2
import random

# calculate means and std
train_txt_path = './train_val_list.txt'

CNum = 10000   # 挑选多少图片进行计算

img_h, img_w = 32, 32
imgs = np.zeros([img_w, img_h, 3, 1])
means, stdevs = [], []

with open(train_txt_path, 'r') as f:
 lines = f.readlines()
 random.shuffle(lines)  # shuffle , 随机挑选图片

for i in tqdm_notebook(range(CNum)):
   img_path = os.path.join('./train', lines[i].rstrip().split()[0])

img = cv2.imread(img_path)
   img = cv2.resize(img, (img_h, img_w))
   img = img[:, :, :, np.newaxis]

imgs = np.concatenate((imgs, img), axis=3)
#     print(i)

imgs = imgs.astype(np.float32)/255.

for i in tqdm_notebook(range(3)):
 pixels = imgs[:,:,i,:].ravel() # 拉成一行
 means.append(np.mean(pixels))
 stdevs.append(np.std(pixels))

# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()

print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))

来源:https://blog.csdn.net/weixin_38533896/article/details/85951903

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com