Python之维度dim的定义及其理解使用方式
作者:静静喜欢大白 发布时间:2021-06-10 12:33:04
一、dim的定义
TensorFlow对张量的阶、维度、形状有着明确的定义,而在pytorh中对其的定义却模糊不清,仅仅有一个torch.size()的函数来查看张量的大小(我理解的这个大小指的就是TensorFlow对张量的形状描述,也和numpy的.shape类似)。
所以,首先要搞清楚如何看一个张量的形状。
import torch
z = torch.ones(2,3,4)
print(z)
print(z.size())
print(z.size(0))
print(z.size(1))
print(z.size(2))
以上代码的控制台输出为:
tensor([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]],
[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]])
torch.Size([2, 3, 4])
2
3
4
可见,我们成功创建了一个(2,3,4)大小的张量,那么我们人工应该怎么辨别一个张量的大小呢?
为了直观,我把这个张量的中括号调整一个位置:
[
[
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]
],
[
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]
]
]
我们可以看到:
第一层(最外层)中括号里面包含了两个中括号(以逗号进行分割),这就是(2,3,4)中的2
第二层中括号里面包含了三个中括号(以逗号进行分割),这就是(2,3,4)中的3
第三层中括号里面包含了四个数(以逗号进行分割),这就是(2,3,4)中的4
结论:pytorch中的tensor维度可以通过第一个数前面的中括号数量来判断,有几个中括号维度就是多少。拿到一个维度很高的向量,将最外层的中括号去掉,数最外层逗号的个数,逗号个数加一就是最高维度的维数,如此循环,直到全部解析完毕。
我们还看到:
z.size(0) = 2,z.size(1) = 3,z.size(2) = 4
第0维度为2,第1维度为3,第2维度为4,即维度的标号是以0开始的
二、dim 的理解
网上很多对dim的理解,比如,dim=0,表示的是行,函数的意思就是不要行这一维度,保留列巴拉巴拉之类的,个人觉得不好理解。
比如下图博主的理解
那我的理解就是:
控制变量法大家知道吗??或者消融实验?就是几个方法或者实验的比较,保持只有一个因素是可变的,其他都是一致的,就是控制变量法,论文术语也叫消融实验。
所以,dim的使用也是这样,只有dim指定的维度是可变的,其他都是固定不变的。
dim = 0,列不变(按列-将当前列所有行数据-计算),指定的是行,那就是行变,理解成:针对每一列中,所有行之间的数据比较或者求和等操作,是每一行的比较,因为行是可变的。
dim = 1,行不变(按行-将当前行所有列数据-计算),指定的是列,那就是列变,理解成:针对每一行中,所有列之间的数据比较或者求和等操作,是每一行的比较,因为行是可变的。
三、举例
torch.argmax()
得到最大值的序号索引
dim=0保留列维度,不要行了,保留列的size就可以了
dim=1保留行维度,不要列了,保留行的size就可以了
a = torch.rand((3,4))
print(a)
b = torch.argmax(a, dim=1) ##行不变,指定列,列之间的比较,对下面每列数值进行比较,将最大值对应序号存下,比如下面第一列中第一个值最大,为0,第二列中第二个是最大值,为1,第三列同
print(b)
>>tensor([[0.8338, 0.6953, 0.7558, 0.5803],
[0.2105, 0.7638, 0.0912, 0.3341],
[0.5585, 0.8019, 0.6590, 0.2268]])
>>tensor([0, 1, 1])
说明:dim=1,指定列,也就是行不变,列之间的比较,所以原来的a有三行,最后argmax()出来的应该也是三个值,第一行的时候,同一列之间比较,最大值是0.8338,索引是0,同理,第二行,最大值的索引是1……
sum()
求和
a = t.arange(0,6).view(2,3)
a
>>tensor([[0, 1, 2],
[3, 4, 5]])
a.sum()
a.sum(dim=0) #列不变,指定行,行是可变的,对每一列中的所有行之间的数值进行求和,比如这个例子中,第一列0+3,第二列1+4,第三列2+5
a.sum(dim=1) #行不变,指定列,列是可变的,对每一行中的所有列之间的数值进行求和,比如这个例子中,第一行0+1+2,第二行3+4+5
>>tensor(15.)
>>tensor([3., 5., 7.])
>>tensor([ 3., 12.])
说明:dim=0,指定行,行是可变的,列是不变,所以就是同一列中,每一个行的比较,所以a.sum(dim = 0),第一列的和就是3,第二列的和就是5,第三列的和就是7.
同理,a.sum(dim=1),指定列,列是可变的,行是不变的,所以就是同一列之间的比较或者操作,所以第一行的求和是3,第二行的求和是12
cumsum()
累加
a = t.arange(0,6).view(2,3)
a
>>tensor([[0, 1, 2],
[3, 4, 5]])
a.cumsum(dim=0) # 指定行,列不变,行变,从第一行到最后一行的累加
>>tensor([[0, 1, 2],
[3, 5, 7]])
a.cumsum(dim=1) # 指定列,行不变,列变,从第一列到最后一列的累加
>>tensor([[ 0, 1, 3],
[ 3, 7, 12]])
来源:https://jingliu.blog.csdn.net/article/details/114262597


猜你喜欢
- 比如要访问b站在a站设置一个cookies,则可以这样做: 1.在b.com下建立一个文件cookies.htm 内容为: 代码如下:内容摘
- 前言怎么样使用Python提高自己的工作效率,今天就给大家分享这个吧。我们经常用pandas读入读写excel文件,经常会遇到一个excel
- 前言本文将记录学习基于 Socket 通信机制建立 TCP 反向连接,借助 Python 脚本实现主机远程控制的目的。我们在传输数据时,可以
- 最近开始学机器学习,学习分析垃圾邮件,其中有一部分是要求去除一段字符中的标点符号,查了一下,网上的大多很复杂例如这样import re te
- PDOStatement::columnCountPDOStatement::columnCount — 返回结果集中的列数。(PHP 5
- 前几天要写一个东西里面有用到读文件的。 可是我不想用FSO,我怕有的空间不支持。 &nbs
- 本文实例讲述了PHP基于cookie与session统计网站访问量并输出显示的方法。分享给大家供大家参考,具体如下:<?php$f_o
- 1、查找重复记录 ①如果只是不想在查询结果中存在重复记录, 可以加Distinct select distinct * from TestT
- 前言最近遇到一个需求,有几十个Excel,每个的字段都不一样,然后都差不多是第一行是表头,后面几千上万的数据,需要把这些Excel中的数据全
- 文本:每行在promotion后面包含一些数字,如果这些数字是相同的,则认为是相同的行,对于相同的行,只保留一行。思路:根据字典和字符串切割
- 代码如下# 爬取网易音乐import requestsfrom bs4 import BeautifulSoupimport urllib.
- 一般情况下,使用pip命令安装即可:[root@dthost27 ~]# pip install mysql-python但是在实际工作环境
- 2。date_default_timezone_set("PRC"); 3。PHP&
- 在使用ValuesQuerySet存放查询结果时,有时需要转为json,但并不能直接使用json.dumps()直接转,而是需要经过下面一个
- 什么是wxs?wxs(WeiXin Script)是小程序的一套脚本语言, 结合WXML, 可以构建出页面结构.wxs标签<wxs m
- 一):视图的定义视图是由基于一个或多个表的一个查询所定义的虚拟表,它将查询的具体定义保存起来,视图不包含任何数据。视图在操作上和数据表没有什
- 对于网站开发者来说,对展示内容增加一个滑动或者是轮播效果的是非常常见的需求。收费和免费的轮播插件多的是不胜枚举。其中很 多提供很多有用的配置
- 前言在php开发过程中,获取文件扩展名是非常常见的需求。比如我们在上传文件的时候,首先需要判断文件类型是否为我们允许上传的类型。这个时候就需
- 一、Pandas两大数据结构的创建序号方法说明1pd.Series(对象,index=[ ])创建Series。对象可以是列表\ndarra
- 一般你在迭代一组数据的时候,需要创建一个数据,假设数组很大,则会消耗很大性能,甚至造成内存不足。//Fatal error: Allowed