神经网络python源码分享
作者:薄樱 发布时间:2021-10-07 10:41:00
标签:python,神经网络
神经网络的逻辑应该都是熟知的了,在这里想说明一下交叉验证
交叉验证方法:
看图大概就能理解了,大致就是先将数据集分成K份,对这K份中每一份都取不一样的比例数据进行训练和测试。得出K个误差,将这K个误差平均得到最终误差
这第一个部分是BP神经网络的建立
参数选取参照论文:基于数据挖掘技术的股价指数分析与预测研究_胡林林
import math
import random
import tushare as ts
import pandas as pd
random.seed(0)
def getData(id,start,end):
df = ts.get_hist_data(id,start,end)
DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
DATA2=pd.DataFrame(columns=['R'])
DATA['MA20']=df['ma20']
DATA['MA5']=df['ma5']
P=df['close']
P1['high']=df['high']
P1['low']=df['low']
P1['close']=df['close']
P1['open']=df['open']
P1['volume']=df['volume']
DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
templist=(P-P.shift(1))/P.shift(1)
tempDATA = []
for indextemp in templist:
tempDATA.append(1/(1+math.exp(-indextemp*100)))
DATA['r'] = tempDATA
DATA=DATA.dropna(axis=0)
DATA2['R']=DATA['r']
del DATA['r']
DATA=DATA.T
DATA2=DATA2.T
DATAlist=DATA.to_dict("list")
result = []
for key in DATAlist:
result.append(DATAlist[key])
DATAlist2=DATA2.to_dict("list")
result2 = []
for key in DATAlist2:
result2.append(DATAlist2[key])
return result
def getDataR(id,start,end):
df = ts.get_hist_data(id,start,end)
DATA=pd.DataFrame(columns=['rate1', 'rate2','rate3','pos1','pos2','pos3','amt1','amt2','amt3','MA20','MA5','r'])
P1 = pd.DataFrame(columns=['high','low','close','open','volume'])
DATA2=pd.DataFrame(columns=['R'])
DATA['MA20']=df['ma20'].shift(1)
DATA['MA5']=df['ma5'].shift(1)
P=df['close']
P1['high']=df['high']
P1['low']=df['low']
P1['close']=df['close']
P1['open']=df['open']
P1['volume']=df['volume']
DATA['rate1']=(P1['close'].shift(1)-P1['open'].shift(1))/P1['open'].shift(1)
DATA['rate2']=(P1['close'].shift(2)-P1['open'].shift(2))/P1['open'].shift(2)
DATA['rate3']=(P1['close'].shift(3)-P1['open'].shift(3))/P1['open'].shift(3)
DATA['pos1']=(P1['close'].shift(1)-P1['low'].shift(1))/(P1['high'].shift(1)-P1['low'].shift(1))
DATA['pos2']=(P1['close'].shift(2)-P1['low'].shift(2))/(P1['high'].shift(2)-P1['low'].shift(2))
DATA['pos3']=(P1['close'].shift(3)-P1['low'].shift(3))/(P1['high'].shift(3)-P1['low'].shift(3))
DATA['amt1']=P1['volume'].shift(1)/((P1['volume'].shift(1)+P1['volume'].shift(2)+P1['volume'].shift(3))/3)
DATA['amt2']=P1['volume'].shift(2)/((P1['volume'].shift(2)+P1['volume'].shift(3)+P1['volume'].shift(4))/3)
DATA['amt3']=P1['volume'].shift(3)/((P1['volume'].shift(3)+P1['volume'].shift(4)+P1['volume'].shift(5))/3)
templist=(P-P.shift(1))/P.shift(1)
tempDATA = []
for indextemp in templist:
tempDATA.append(1/(1+math.exp(-indextemp*100)))
DATA['r'] = tempDATA
DATA=DATA.dropna(axis=0)
DATA2['R']=DATA['r']
del DATA['r']
DATA=DATA.T
DATA2=DATA2.T
DATAlist=DATA.to_dict("list")
result = []
for key in DATAlist:
result.append(DATAlist[key])
DATAlist2=DATA2.to_dict("list")
result2 = []
for key in DATAlist2:
result2.append(DATAlist2[key])
return result2
def rand(a, b):
return (b - a) * random.random() + a
def make_matrix(m, n, fill=0.0):
mat = []
for i in range(m):
mat.append([fill] * n)
return mat
def sigmoid(x):
return 1.0 / (1.0 + math.exp(-x))
def sigmod_derivate(x):
return x * (1 - x)
class BPNeuralNetwork:
def __init__(self):
self.input_n = 0
self.hidden_n = 0
self.output_n = 0
self.input_cells = []
self.hidden_cells = []
self.output_cells = []
self.input_weights = []
self.output_weights = []
self.input_correction = []
self.output_correction = []
def setup(self, ni, nh, no):
self.input_n = ni + 1
self.hidden_n = nh
self.output_n = no
# init cells
self.input_cells = [1.0] * self.input_n
self.hidden_cells = [1.0] * self.hidden_n
self.output_cells = [1.0] * self.output_n
# init weights
self.input_weights = make_matrix(self.input_n, self.hidden_n)
self.output_weights = make_matrix(self.hidden_n, self.output_n)
# random activate
for i in range(self.input_n):
for h in range(self.hidden_n):
self.input_weights[i][h] = rand(-0.2, 0.2)
for h in range(self.hidden_n):
for o in range(self.output_n):
self.output_weights[h][o] = rand(-2.0, 2.0)
# init correction matrix
self.input_correction = make_matrix(self.input_n, self.hidden_n)
self.output_correction = make_matrix(self.hidden_n, self.output_n)
def predict(self, inputs):
# activate input layer
for i in range(self.input_n - 1):
self.input_cells[i] = inputs[i]
# activate hidden layer
for j in range(self.hidden_n):
total = 0.0
for i in range(self.input_n):
total += self.input_cells[i] * self.input_weights[i][j]
self.hidden_cells[j] = sigmoid(total)
# activate output layer
for k in range(self.output_n):
total = 0.0
for j in range(self.hidden_n):
total += self.hidden_cells[j] * self.output_weights[j][k]
self.output_cells[k] = sigmoid(total)
return self.output_cells[:]
def back_propagate(self, case, label, learn, correct):
# feed forward
self.predict(case)
# get output layer error
output_deltas = [0.0] * self.output_n
for o in range(self.output_n):
error = label[o] - self.output_cells[o]
output_deltas[o] = sigmod_derivate(self.output_cells[o]) * error
# get hidden layer error
hidden_deltas = [0.0] * self.hidden_n
for h in range(self.hidden_n):
error = 0.0
for o in range(self.output_n):
error += output_deltas[o] * self.output_weights[h][o]
hidden_deltas[h] = sigmod_derivate(self.hidden_cells[h]) * error
# update output weights
for h in range(self.hidden_n):
for o in range(self.output_n):
change = output_deltas[o] * self.hidden_cells[h]
self.output_weights[h][o] += learn * change + correct * self.output_correction[h][o]
self.output_correction[h][o] = change
# update input weights
for i in range(self.input_n):
for h in range(self.hidden_n):
change = hidden_deltas[h] * self.input_cells[i]
self.input_weights[i][h] += learn * change + correct * self.input_correction[i][h]
self.input_correction[i][h] = change
# get global error
error = 0.0
for o in range(len(label)):
error += 0.5 * (label[o] - self.output_cells[o]) ** 2
return error
def train(self, cases, labels, limit=10000, learn=0.05, correct=0.1):
for i in range(limit):
error = 0.0
for i in range(len(cases)):
label = labels[i]
case = cases[i]
error += self.back_propagate(case, label, learn, correct)
def test(self,id):
result=getData("000001", "2015-01-05", "2015-01-09")
result2=getDataR("000001", "2015-01-05", "2015-01-09")
self.setup(11, 5, 1)
self.train(result, result2, 10000, 0.05, 0.1)
for t in resulttest:
print(self.predict(t))
下面是选取14-15年数据进行训练,16年数据作为测试集,调仓周期为20个交易日,大约1个月,对上证50中的股票进行预测,选取预测的涨幅前10的股票买入,对每只股票分配一样的资金,初步运行没有问题,但就是太慢了,等哪天有空了再运行
import BPnet
import tushare as ts
import pandas as pd
import math
import xlrd
import datetime as dt
import time
#
#nn =BPnet.BPNeuralNetwork()
#nn.test('000001')
#for i in ts.get_sz50s()['code']:
holdList=pd.DataFrame(columns=['time','id','value'])
share=ts.get_sz50s()['code']
time2=ts.get_k_data('000001')['date']
newtime = time2[400:640]
newcount=0
for itime in newtime:
print(itime)
if newcount % 20 == 0:
sharelist = pd.DataFrame(columns=['time','id','value'])
for ishare in share:
backwardtime = time.strftime('%Y-%m-%d',time.localtime(time.mktime(time.strptime(itime,'%Y-%m-%d'))-432000*4))
trainData = BPnet.getData(ishare, '2014-05-22',itime)
trainDataR = BPnet.getDataR(ishare, '2014-05-22',itime)
testData = BPnet.getData(ishare, backwardtime,itime)
try:
print(testData)
testData = testData[-1]
print(testData)
nn = BPnet.BPNeuralNetwork()
nn.setup(11, 5, 1)
nn.train(trainData, trainDataR, 10000, 0.05, 0.1)
value = nn.predict(testData)
newlist= pd.DataFrame({'time':itime,"id":ishare,"value":value},index=["0"])
sharelist = sharelist.append(newlist,ignore_index=True)
except:
pass
sharelist=sharelist.sort(columns ='value',ascending=False)
sharelist = sharelist[:10]
holdList=holdList.append(sharelist,ignore_index=True)
newcount+=1
print(holdList)
总结
神经网络理论基础及Python实现详解
Python语言实现百度语音识别API的使用实例
Python通过matplotlib绘制动画简单实例
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
来源:https://www.cnblogs.com/yunerlalala/p/6240722.html


猜你喜欢
- 软硬件环境OS X EI CapitanPython 3.5.1mysql 5.6前言在开发中经常涉及到数据库的使用,而python对于数据
- 这是asp利用dictionary创建二维数组的例子,这样做的优点是:1、数组下标可以是字符串2、长度不是固定的<'% ’==
- Vision Transformer(VIT)Vision Transformer(ViT)是一种新兴的图像分类模型,它使用了类似于自然语言
- <script> function window.onload(){ if(location.href.indexOf('
- vbscript中,错误处理使用on error resume next来完成,如果在你的代码里加入这一句,在这句之后的其他代码如果出现错误
- 一、闭包1.1 三要素 必须有一个内嵌函数内嵌函数必须引用外部函数中变量外部函数返回值必须是内嵌函数1.2 语法# 语法def 外部函数名(
- 以下的文章主要是对MySQL性能影响关系紧密的五大配置参数的介绍,我前几天在相关网站看见对MySQL性能影响关系紧密的五大配置参数的资料,觉
- CREATE TABLE `category` ( `Id` binary(1
- 我就废话不多说了,直接上代码吧!#coding=utf-8'''openCV中最核心的的类是Mat,他是matrix
- 本篇博客主要讲解以下问题:Git 常用命令 创建新仓库检出仓库添加与提交推送改动分支更新与合并标签替换本地改动Git实例教程操作小技巧Git
- 一,前言我们现在拿到了一个十分庞大的数据集。是json文件,里面存储了将近十万个数据,现在要对其中的数据进行清洗处理。二,python模块i
- 一、写在前面之前一直用putty,ssh,修改代码,或者本地修改,上传到服务器,各种不爽,现在改用xshell,但是有时候还是不方便感觉,于
- Numpy 是Python科学计算的一个核心模块。它提供了非常高效的数组对象,以及用于处理这些数组对象的工具。一个Numpy数组由许多值组成
- 今天给大家分享一个简单的python脚本,使用python进行http的接口测试,脚本很简单,逻辑是:读取excel写好的测试用例,然后根据
- 前言千位分隔符,其实就是数字中的逗号。依西方的习惯,人们在数字中加进一个符号,以免因数字位数太多而难以看出它的值。所以人们在数字中,每隔三位
- 前言本文主要给大家介绍的是关于MySQL自定义函数和存储过程的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧1、前
- 1. 用途(?(id/name)yes-pattern|no-pattern)的作用是:对于给出的id或者name,先尝试去匹配
- SQL Server执行动态SQL的话,应该如何实现呢?下面就为您介绍SQL Server执行动态SQL两种正确方式,希望可以让您对SQL
- 前言如果我们和面试官聊到事务的问题,怎么回答呢?先说下事务是什么,因为我们业务是比较复杂的,不可能一个sql就能解决的,涉及多个sql就组成
- 01、正则表达式学习正则表达式操作字符串,re模块是用C语言写的没匹配速度非常快,其中compile函数根据一个模式字符串和可选的标志参数生