网络编程
位置:首页>> 网络编程>> Python编程>> pytorch 获取层权重,对特定层注入hook, 提取中间层输出的方法

pytorch 获取层权重,对特定层注入hook, 提取中间层输出的方法

作者:青盏  发布时间:2021-05-20 07:01:01 

标签:pytorch,层权重,hook,中间层

如下所示:


#获取模型权重
for k, v in model_2.state_dict().iteritems():
print("Layer {}".format(k))
print(v)


#获取模型权重
for layer in model_2.modules():
if isinstance(layer, nn.Linear):
 print(layer.weight)

#将一个模型权重载入另一个模型
model = VGG(make_layers(cfg['E']), **kwargs)
if pretrained:
load = torch.load('/home/huangqk/.torch/models/vgg19-dcbb9e9d.pth')
load_state = {k: v for k, v in load.items() if k not in ['classifier.0.weight', 'classifier.0.bias', 'classifier.3.weight', 'classifier.3.bias', 'classifier.6.weight', 'classifier.6.bias']}
model_state = model.state_dict()
model_state.update(load_state)
model.load_state_dict(model_state)
return model

# 对特定层注入hook
def hook_layers(model):
def hook_function(module, inputs, outputs):
 recreate_image(inputs[0])

print(model.features._modules)
first_layer = list(model.features._modules.items())[0][1]
first_layer.register_forward_hook(hook_function)

#获取层
x = someinput
for l in vgg.features.modules():
x = l(x)
modulelist = list(vgg.features.modules())
for l in modulelist[:5]:
x = l(x)
keep = x
for l in modulelist[5:]:
x = l(x)

# 提取vgg模型的中间层输出
# coding:utf8
import torch
import torch.nn as nn
from torchvision.models import vgg16
from collections import namedtuple

class Vgg16(torch.nn.Module):
def __init__(self):
 super(Vgg16, self).__init__()
 features = list(vgg16(pretrained=True).features)[:23]
 # features的第3,8,15,22层分别是: relu1_2,relu2_2,relu3_3,relu4_3
 self.features = nn.ModuleList(features).eval()

def forward(self, x):
 results = []
 for ii, model in enumerate(self.features):
  x = model(x)
  if ii in {3, 8, 15, 22}:
   results.append(x)

vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3'])
 return vgg_outputs(*results)

来源:https://blog.csdn.net/qq_16234613/article/details/80217851

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com