使用matplotlib库实现图形局部数据放大显示的实践
作者:枭志 发布时间:2021-01-13 18:47:13
标签:matplotlib,图形,局部,放大
一、绘制总体图形
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from matplotlib.patches import ConnectionPatch
import pandas as pd
MAX_EPISODES = 300
x_axis_data = []
for l in range(MAX_EPISODES):
x_axis_data.append(l)
fig, ax = plt.subplots(1, 1)
data1 = pd.read_csv('./result/test_reward.csv')['test_reward'].values.tolist()[:MAX_EPISODES]
data2 = pd.read_csv('./result/test_reward_att.csv')['test_reward_att'].values.tolist()[:MAX_EPISODES]
ax.plot(data1,label="no att")
ax.plot(data2,label = "att")
ax.legend()
二、插入局部子坐标系
#插入子坐标系
axins = inset_axes(ax, width="40%", height="20%", loc=3,
bbox_to_anchor=(0.3, 0.1, 2, 2),
bbox_transform=ax.transAxes)
#在子坐标系中放入数据
axins.plot(data1)
axins.plot(data2)
三、限制局部子坐标系数据范围
#设置放大区间
zone_left = 150
zone_right = 170
# 坐标轴的扩展比例(根据实际数据调整)
x_ratio = 0 # x轴显示范围的扩展比例
y_ratio = 0.05 # y轴显示范围的扩展比例
# X轴的显示范围
xlim0 = x_axis_data[zone_left]-(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio
xlim1 = x_axis_data[zone_right]+(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio
# Y轴的显示范围
y = np.hstack((data1[zone_left:zone_right], data2[zone_left:zone_right]))
ylim0 = np.min(y)-(np.max(y)-np.min(y))*y_ratio
ylim1 = np.max(y)+(np.max(y)-np.min(y))*y_ratio
# 调整子坐标系的显示范围
axins.set_xlim(xlim0, xlim1)
axins.set_ylim(ylim0, ylim1)
(-198439.93763, -134649.56637000002)
四、加上方框和连接线
# 原图中画方框
tx0 = xlim0
tx1 = xlim1
ty0 = ylim0
ty1 = ylim1
sx = [tx0,tx1,tx1,tx0,tx0]
sy = [ty0,ty0,ty1,ty1,ty0]
ax.plot(sx,sy,"blue")
# 画两条线
#第一条线
xy = (xlim0,ylim0)
xy2 = (xlim0,ylim1)
"""
xy为主图上坐标,xy2为子坐标系上坐标,axins为子坐标系,ax为主坐标系。
"""
con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data",
axesA=axins,axesB=ax)
axins.add_artist(con)
#第二条线
xy = (xlim1,ylim0)
xy2 = (xlim1,ylim1)
con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data",
axesA=axins,axesB=ax)
axins.add_artist(con)
五、总体实现代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from matplotlib.patches import ConnectionPatch
import pandas as pd
MAX_EPISODES = 300
x_axis_data = []
for l in range(MAX_EPISODES):
x_axis_data.append(l)
fig, ax = plt.subplots(1, 1)
data1 = pd.read_csv('./result/test_reward.csv')['test_reward'].values.tolist()[:MAX_EPISODES]
data2 = pd.read_csv('./result/test_reward_att.csv')['test_reward_att'].values.tolist()[:MAX_EPISODES]
ax.plot(data1,label="no att")
ax.plot(data2,label = "att")
ax.legend()
#插入子坐标系
axins = inset_axes(ax, width="20%", height="20%", loc=3,
bbox_to_anchor=(0.3, 0.1, 2, 2),
bbox_transform=ax.transAxes)
#在子坐标系中放入数据
axins.plot(data1)
axins.plot(data2)
#设置放大区间
zone_left = 150
zone_right = 170
# 坐标轴的扩展比例(根据实际数据调整)
x_ratio = 0 # x轴显示范围的扩展比例
y_ratio = 0.05 # y轴显示范围的扩展比例
# X轴的显示范围
xlim0 = x_axis_data[zone_left]-(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio
xlim1 = x_axis_data[zone_right]+(x_axis_data[zone_right]-x_axis_data[zone_left])*x_ratio
# Y轴的显示范围
y = np.hstack((data1[zone_left:zone_right], data2[zone_left:zone_right]))
ylim0 = np.min(y)-(np.max(y)-np.min(y))*y_ratio
ylim1 = np.max(y)+(np.max(y)-np.min(y))*y_ratio
# 调整子坐标系的显示范围
axins.set_xlim(xlim0, xlim1)
axins.set_ylim(ylim0, ylim1)
# 原图中画方框
tx0 = xlim0
tx1 = xlim1
ty0 = ylim0
ty1 = ylim1
sx = [tx0,tx1,tx1,tx0,tx0]
sy = [ty0,ty0,ty1,ty1,ty0]
ax.plot(sx,sy,"blue")
# 画两条线
# 第一条线
xy = (xlim0,ylim0)
xy2 = (xlim0,ylim1)
"""
xy为主图上坐标,xy2为子坐标系上坐标,axins为子坐标系,ax为主坐标系。
"""
con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data",
axesA=axins,axesB=ax)
axins.add_artist(con)
# 第二条线
xy = (xlim1,ylim0)
xy2 = (xlim1,ylim1)
con = ConnectionPatch(xyA=xy2,xyB=xy,coordsA="data",coordsB="data",
axesA=axins,axesB=ax)
axins.add_artist(con)
来源:https://blog.csdn.net/qq_43790749/article/details/122969620


猜你喜欢
- 这篇文章主要介绍了基于python traceback实现异常的获取与处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参
- 前言本文将介绍如何使用ONNX将PyTorch中训练好的模型(.pt、.pth)型转换为ONNX格式,然后将其加载到Caffe2中。需要安装
- 一、建造者模式建造者模式,顾名思义类似于建筑工人,他们按照有条理的施工顺序(e.g. 打桩 => 浇筑框架 => 砌墙 =>
- 本文实例讲述了PHP面向对象程序设计子类扩展父类(子类重新载入父类)操作。分享给大家供大家参考,具体如下:在PHP中,会遇到这样的情况,子类
- requests模块:python中原生的一款基于网络请求的模块,功能非常强大,简单便捷,效率极高。作用:模拟浏览器发请求。提示:老版使用
- CSS中最常用的布局类属性,一个是Float(CSS浮动属性Float详解),另一个就是CSS定位属性Position。1. positio
- 1.新建四个层,放入相应图片,模特层的z-index值设为0。2.把第一个层移到模特身上,找出衣服刚好穿上时层的top和left值,记下来,
- 一、类和对象Python属于动态类型的语言,而动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时创建的,而是运行时动态创建的,比方
- 进程和线程是计算机软件领域里很重要的概念,进程和线程有区别,也有着密切的联系,先来辨析一下这两个概念:1.定义进程是具有一定独立功能的程序关
- 前言在此之前,我认为 Python 的类型提示就是一个花瓶,看起来好看,但并没有实质的作用,因为即使类型写错了,或者传错了,程序仍然可以运行
- 前言这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是“最佳实践”吧。最后希望大家
- Mac版Python3安装/升级Mac系统自带Python,但都是2.X版本,非常老的版本了。如果我们需要安装Python3版本,怎么能快速
- 错误图片解决mysql -u root -p 以root身份进入mysqlgrant all on *.* to 'root'
- 所谓的CSV(逗号分隔值)格式是电子表格和数据库最常用的导入和导出格式。尝试使用CSV格式进行标准化描述之前已经使用了很多年。该csv模块r
- 本文教大家使用了laydate插件设置开始和结束时间,供大家参考,具体内容如下用的laydate插件是layDate-v5.0.6,是新版本
- 在应用系统中,尤其在联机事务处理系统中,对数据查询及处理速度已成为衡量应用系统成败的标准。而采用索引来加快数据处理速度也成为广大数据库用户所
- 效果图自定义一个Item新建一个QWidget对象在QWidget内添加Layout在Layout内添加要的控件为QWidget设置Layo
- 扰动的鲁棒性在之前我们讨论权重衰减(L2正则化)时看到的那样,参数的范数也代表了一种有用的简单性度量。简单性的另一个有用角度是平滑性,即函数
- 本文实例讲述了python将文本转换成图片输出的方法。分享给大家供大家参考。具体实现方法如下:#-*- coding:utf-8 -*-fr
- 闭包与defer1.闭包闭包 : 一个函数与其相关的引用环境组合的一个实体,其实可以理解为面向对象中类中的属性与方法。如代码块中,函数fun