Python数学建模PuLP库线性规划实际案例编程详解
作者:youcans 发布时间:2021-04-29 19:12:56
1、问题描述
某厂生产甲乙两种饮料,每百箱甲饮料需用原料6千克、工人10名,获利10万元;每百箱乙饮料需用原料5千克、工人20名,获利9万元。
今工厂共有原料60千克、工人150名,又由于其他条件所限甲饮料产量不超过8百箱。
(1)问如何安排生产计划,即两种饮料各生产多少使获利最大?
(2)若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
(3)若每百箱甲饮料获利可增加1万元,是否应否改变生产计划?
(4)若每百箱甲饮料获利可增加1万元,若投资0.8万元可增加原料1千克,是否应作这项投资?投资多少合理?
(5)若不允许散箱(按整百箱生产),如何安排生产计划,即两种饮料各生产多少使获利最大?
2、用PuLP 库求解线性规划
2.1问题 1
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
目标函数:
max fx = 10*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
import pulp # 导入 pulp库
ProbLP1 = pulp.LpProblem("ProbLP1", sense=pulp.LpMaximize) # 定义问题 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
ProbLP1 += (10*x1 + 9*x2) # 设置目标函数 f(x)
ProbLP1 += (6*x1 + 5*x2 <= 60) # 不等式约束
ProbLP1 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP1.solve()
print(ProbLP1.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP1.status]) # 输出求解状态
for v in ProbLP1.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F1(x)=", pulp.value(ProbLP1.objective)) # 输出最优解的目标函数值
# = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
(3)运行结果
ProbLP1
x1=6.4285714
x2=4.2857143
F1(X)=102.8571427
2.2问题 2
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
x3:增加投资(单位:万元)
目标函数:
max fx = 10*x1 + 9*x2 - x3
约束条件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
import pulp # 导入 pulp库
ProbLP2 = pulp.LpProblem("ProbLP2", sense=pulp.LpMaximize) # 定义问题 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
x3 = pulp.LpVariable('x3', cat='Continuous') # 定义 x3
ProbLP2 += (10*x1 + 9*x2 - x3) # 设置目标函数 f(x)
ProbLP2 += (6*x1 + 5*x2 - 1.25*x3 <= 60) # 不等式约束
ProbLP2 += (10*x1 + 20*x2 <= 150) # 不等式约束
ProbLP2.solve()
print(ProbLP2.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP2.status]) # 输出求解状态
for v in ProbLP2.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F2(x)=", pulp.value(ProbLP2.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP2
x1=8.0
x2=3.5
x3=4.4
F2(X)=107.1
2.3问题 3
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
目标函数:
max fx = 11*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
import pulp # 导入 pulp库
ProbLP3 = pulp.LpProblem("ProbLP3", sense=pulp.LpMaximize) # 定义问题 3,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
ProbLP3 += (11 * x1 + 9 * x2) # 设置目标函数 f(x)
ProbLP3 += (6 * x1 + 5 * x2 <= 60) # 不等式约束
ProbLP3 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP3.solve()
print(ProbLP3.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP3.status]) # 输出求解状态
for v in ProbLP3.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F3(x) =", pulp.value(ProbLP3.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP3
x1=8.0
x2=2.4
F3(X) = 109.6
2.4问题 4
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量(单位:百箱)
x2:乙饮料产量(单位:百箱)
x3:增加投资(单位:万元)
目标函数:
max fx = 11*x1 + 9*x2 - x3
约束条件:
6*x1 + 5*x2 <= 60 + x3/0.8
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7.5
(2)Python 编程
import pulp # 导入 pulp库 ProbLP4 = pulp.LpProblem("ProbLP4", sense=pulp.LpMaximize) # 定义问题 2,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Continuous') # 定义 x1
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Continuous') # 定义 x2
x3 = pulp.LpVariable('x3', cat='Continuous') # 定义 x3
ProbLP4 += (11 * x1 + 9 * x2 - x3) # 设置目标函数 f(x)
ProbLP4 += (6 * x1 + 5 * x2 - 1.25 * x3 <= 60) # 不等式约束
ProbLP4 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP4.solve()
print(ProbLP4.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP4.status]) # 输出求解状态
for v in ProbLP4.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F4(x) = ", pulp.value(ProbLP4.objective)) # 输出最优解的目标函数值
# = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
(3)运行结果
ProbLP4
x1=8.0
x2=3.5
x3=4.4
F4(X) = 115.1
2.5问题 5:整数规划问题
(1)数学建模
问题建模:
决策变量:
x1:甲饮料产量,正整数(单位:百箱)
x2:乙饮料产量,正整数(单位:百箱)
目标函数:
max fx = 10*x1 + 9*x2
约束条件:
6*x1 + 5*x2 <= 60
10*x1 + 20*x2 <= 150
取值范围:
给定条件:x1, x2 >= 0,x1 <= 8,x1, x2 为整数
推导条件:由 x1,x2>=0 和 10*x1+20*x2<=150 可知:0<=x1<=15;0<=x2<=7.5
因此,0 <= x1<=8,0 <= x2<=7
说明:本题中要求饮料车辆为整百箱,即决策变量 x1,x2 为整数,因此是整数规划问题。PuLP提供了整数规划的
(2)Python 编程
import pulp # 导入 pulp库
ProbLP5 = pulp.LpProblem("ProbLP5", sense=pulp.LpMaximize) # 定义问题 1,求最大值
x1 = pulp.LpVariable('x1', lowBound=0, upBound=8, cat='Integer') # 定义 x1,变量类型:整数
x2 = pulp.LpVariable('x2', lowBound=0, upBound=7.5, cat='Integer') # 定义 x2,变量类型:整数
ProbLP5 += (10 * x1 + 9 * x2) # 设置目标函数 f(x)
ProbLP5 += (6 * x1 + 5 * x2 <= 60) # 不等式约束
ProbLP5 += (10 * x1 + 20 * x2 <= 150) # 不等式约束
ProbLP5.solve()
print(ProbLP5.name) # 输出求解状态
print("Status:", pulp.LpStatus[ProbLP5.status]) # 输出求解状态
for v in ProbLP5.variables():
print(v.name, "=", v.varValue) # 输出每个变量的最优值
print("F5(x) =", pulp.value(ProbLP5.objective)) # 输出最优解的目标函数值
(3)运行结果
ProbLP5
x1=8.0
x2=2.0
F5(X) = 98.0
以上就是Python数学建模PuLP库线性规划实际案例编程详解的详细内容,更多关于PuLP库线性规划实际编程案例的资料请关注脚本之家其它相关文章!
来源:https://blog.csdn.net/youcans/article/details/116371509


猜你喜欢
- 1.建表-- Create table create table test ( dm1 char(3), dm2 char(3), mc1
- 简单Python词法分析器实现,供大家参考,具体内容如下词法分析器状态转换图:词法分析器总流程图:预处理程序:词法分析器:词法分析器程序详细
- 在上一篇文章中,我整理了pandas在数据合并和重塑中常用到的concat方法的使用说明。在这里,将接着介绍pandas中也常常用到的joi
- 在上一篇博客中,已经将环境搭建好了。现在,我们利用搭建的环境来运行一条测试脚本,脚本中启动一个计算器的应用,并实现加法的运算。创建模拟器在运
- 如何用net/http构建一个简单的web服务Golang提供了简洁的方法来构建web服务package main import ( &nb
- Graphical User Interface,简称 GUI,又称图形化用户接口,所谓的GUI编程,指的是用户不需要输入代码指令,只通过图
- python 代码如下:# -*- coding:utf-8 -*-import pandas as pdimport pymysqlimp
- 首先呢,我们来看看一般项目路由是怎么划分的。为什么这么划分呢?如果大项目业务非常多,单纯的单页面很难维护,我们只有这样规范化,才能高效率。模
- Silverlight和Flash,到底谁更强?谁更有优势?很多初接触Silverlight和Flash的人总是会问这个问题,因为它们在表面
- 如下所示:'''@author: Jacobpc'''import osimport sys
- python中获取字典的key列表和value列表 # -*- coding: utf-8 -*-# 定义一个字典dic = {'剧
- 今天我想试试能不能用数组来实现矩阵转置呢?想知道,那就接着往下看吧。希望大家读完有所收获,那我辛苦码字也就值了。一、常见二维数组操作🌴创建与
- 前言事情是这样的,昨天去表弟家,用了下他的电脑,不小心点到了他硬盘里隐藏的秘密,本来我只需要用几分钟电脑的,害得我硬是在电脑旁坐了几个小时~
- 一、安装依赖包pip install --index https://pypi.mirrors.ustc.edu.cn/simple/ py
- 引言数组是相同数据类型的一组数据的集合,数组一旦定义长度不能修改,数组可以通过下标(或者叫索引)来访问元素。相对于去声明 number0,
- 前言:tkinter提供了3种布局管理方式:1、pack2、grid3、place每种布局管理器都非常有用,根据不同的需求,选择对应的布局方
- 数据的合并与关联是数据处理过程中经常遇到的问题,在SQL、HQL中大家可能都有用到 join、uion all 等 ,在 Pandas 中也
- 基本模块 python爬虫,web spider。爬取网站获取网页数据,并进行分析提取。基本模块使用的是 urllib,urlli
- 下载地址:https://dev.mysql.com/downloads/mysql/5.7.html#downloads上传到服务器rz
- 前言Python语言的turtle库是一个直观有趣的图形绘制函数库,是python语言标准库之一。turtle库也叫海龟库,是turtle绘