机器学习10大经典算法详解
作者:YC_Yuan 发布时间:2021-02-21 01:39:57
本文为大家分享了机器学习10大经典算法,供大家参考,具体内容如下
1、C4.5
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:
1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
2)在树构造过程中进行剪枝;
3)能够完成对连续属性的离散化处理;
4)能够对不完整数据进行处理。
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。
2、The k-means algorithm即K-Means算法
k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。
3、Support vector machines支持向量机
支持向量机(Support Vector Machine),简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt和Barnard将支持向量机和其他分类器进行了比较。
4、The Apriori algorithm
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
5、最大期望(EM)算法
在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。
6、PageRank网页排名
PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。
PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。
7、AdaBoost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。
8、kNN: k-nearest neighbor classification
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
9、Naive Bayes朴素贝叶斯
在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。
10、CART:分类与回归树
CART, Classification and Regression Trees。在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。
来源:http://www.cnblogs.com/blueyyc/articles/5560755.html


猜你喜欢
- 小毅的blog:http://andymao.com/andy/注:本文实例在IE5.x下可能会显示不出来,请使用IE6、IE7、Firef
- 一、MySQL中如何表示当前时间?其实,表达方式还是蛮多的,汇总如下:CURRENT_TIMESTAMPCURRENT_TIMESTAMP(
- 一、创建项目本篇文章介绍如何将一个ASP.NET Core Web程序部署到Windows系统上。这里以ASP.NET Core WebAp
- 栗子:计算斐波那契数列(任一个数都是前两个数之和的数字序列)Python2.7实现代码如下:<strong><span s
- Mimesis是一个用于Python的高性能伪数据生成器, 支持多种不同的语言可以用来生成各种测试数据、假的 API 、任意结构的
- 在python中操作文件算是一个基本操作,但是选对了模块会让我们的效率大大提升。本篇整理了两种模块的常用方法,分别是os模块和shutil模
- 问题keras使用预训练模型vgg16分类,损失和准确度不变。细节:使用keras训练一个两类数据,正负比例1:3,在vgg16后添加了几个
- 目录一、基本用法二、计数循环三、字符串遍历循环四、列表遍历循环五、文件遍历循环六、遍历循环的扩展模式一、基本用法for <循环变量&g
- 区别:series,只是一个一维数据结构,它由index和value组成。dataframe,是一个二维结构,除了拥有index和value
- 前言本项目是使用了谷歌开源的框架mediapipe,里面有非常多的模型提供给我们使用,例如面部检测,身体检测,手部检测等。原理首先先进行手部
- 本文实例为大家分享了php实现ajax图片上传的具体代码,供大家参考,具体内容如下html页面代码<!DOCTYPE html>
- 今天在百度知道看php相关资料时发现一个网友问一个wordpress安装提示错误的一个问题,说他在安装wordpress安装包时遇到这样一个
- 我们用pyinstaller把朋友文件打包成exe文件,但有时候我们需要还原,我们可以用pyinstxtractor.py用法:python
- 两个JS之间的函数互相调用这个问题是我在工作中用到的一个方法 因为要做封装所以想到能不能在一个js中引用另一个js中的function这样的
- 在论坛上看到了用Python登录微信并实现自动签到,才了解到一个新的Python库: itchat库文档说明链接在这:  
- 一、关于XML解析XML在Java应用程序里变得越来越重要, 广泛应用于数据存储和交换. 比如我们常见的配置文件,都是以XML方式存储的.
- 前言近几年,制造业作为国民经济主体,是国家创造力、竞争力和综合国力的重要体现。作为制造强国建设的主攻方向,可以说,智能制造发展水平关乎我国未
- 什么是协程协程是python种一种实现多任务的方式,他是一种比线程更加小的单元,占用更小的执行单元(资源),为啥说他是一个执行单元,因为他自
- 1.创建表:drop table if exists photo;CREATE TABLE photo (  
- 写在前面题目所说的并不是目的,主要是为了更详细的了解网站的反爬机制,如果真的想要提高博客的阅读量,优质的内容必不可少。了解网站的反爬机制一般