python因子分析的实例
作者:洋洋菜鸟 发布时间:2021-12-29 18:20:44
一、起源
因子分析的起源是这样的:1904年英国的一个心理学家发现学生的英语、法语和古典语成绩非常有相关性,他认为这三门课程背后有一个共同的因素驱动,最后将这个因素定义为“语言能力”。
基于这个想法,发现很多相关性很高的因素背后有共同的因子驱动,从而定义了因子分析,这便是因子分析的由来。
二、基本思想
我们再通过一个更加实际的例子来理解因子分析的基本思想:
现在假设一个同学的数学、物理、化学、生物都考了满分,那么我们可以认为这个学生的理性思维比较强,在这里理性思维就是我们所说的一个因子。在这个因子的作用下,偏理科的成绩才会那么高。
到底什么是因子分析?就是假设现有全部自变量x的出现是因为某个潜在变量的作用,这个潜在的变量就是我们说的因子。在这个因子的作用下,x能够被观察到。
因子分析就是将存在某些相关性的变量提炼为较少的几个因子,用这几个因子去表示原本的变量,也可以根据因子对变量进行分类。
因子分子本质上也是降维的过程,和主成分分析(PCA)算法比较类似。
三、算法用途
因子分析法和主成分分析法有很多类似之处。因子分析的主要目的是用来描述隐藏在一组测量到的变量中的一些更基本的,但又无法直接测量到的隐性变量。因子分析法也可以用来综合评价。
其主要思路是利用研究指标的之间存在一定的相关性,从而推想是否存在某些潜在的共性因子,而这些不同的潜在的共性因子不同程度地共同影响着研究指标。因子分析可以在许多变量中找出隐藏的具有代表性的因子,将共同本质的变量归入一个因子,可以减少变量的数目。
四、因子分析步骤
应用因子分析法的主要步骤如下:
对所给的数据样本进行标准化处理
计算样本的相关矩阵R
求相关矩阵R的特征值、特征向量
根据系统要求的累积贡献度确定主因子的个数
计算因子载荷矩阵A
最终确定因子模型
五、factor_analyzer库
利用Python进行因子分析的核心库是:factor_analyzer
pip install factor_analyzer
这个库主要有两个主要的模块需要学习:
factor_analyzer.analyze(重点)
factor_analyzer.factor_analyzer
官网学习地址:factor_analyzer package — factor_analyzer 0.3.1 documentation
六、实例详解
数据来源于中国统计年鉴。
1.导入库
# 数据处理
import pandas as pd
import numpy as np
# 绘图
import seaborn as sns
import matplotlib.pyplot as plt
# 因子分析
from factor_analyzer import FactorAnalyzer
2.读取数据
df = pd.read_csv("D:\桌面\demo.csv",encoding='gbk')
df
输出:
如果不想要城市那一列的话,可以在读取的时候就删除,也可以后面再删
比如,读取时删除
df = pd.read_csv("D:\桌面\demo.csv", index_col=0,encoding='gbk').reset_index(drop=True)
df
返回:
然后我们查询一下,数据的缺失值情况:
df.isnull().sum()
返回:
然后,我们可以针对的,对数据进行一次处理:
比如删除无效字段的那一列
# 去掉无效字段
df.drop(["变量名1","变量名2","变量名3"],axis=1,inplace=True)
或者,删除空值
# 去掉空值
df.dropna(inplace=True)
3.充分性检测
在进行因子分析之前,需要先进行充分性检测,主要是检验相关特征阵中各个变量间的相关性,是否为单位矩阵,也就是检验各个变量是否各自独立。
3.1 Bartlett's球状检验
检验总体变量的相关矩阵是否是单位阵(相关系数矩阵对角线的所有元素均为1,所有非对角线上的元素均为零);即检验各个变量是否各自独立。
如果不是单位矩阵,说明原变量之间存在相关性,可以进行因子分子;反之,原变量之间不存在相关性,数据不适合进行主成分分析
from factor_analyzer.factor_analyzer import calculate_bartlett_sphericity
chi_square_value, p_value = calculate_bartlett_sphericity(df)
chi_square_value, p_value
返回:
3.2 KMO检验
检查变量间的相关性和偏相关性,取值在0-1之间;KOM统计量越接近1,变量间的相关性越强,偏相关性越弱,因子分析的效果越好。
通常取值从0.6开始进行因子分析
#KMO检验
from factor_analyzer.factor_analyzer import calculate_kmo
kmo_all,kmo_model=calculate_kmo(df)
kmo_model
返回:
通过结果可以看到KMO大于0.6,也说明变量之间存在相关性,可以进行分析。
4.选择因子个数
方法:计算相关矩阵的特征值,进行降序排列
4.1 特征值和特征向量
faa = FactorAnalyzer(25,rotation=None)
faa.fit(df)
# 得到特征值ev、特征向量v
ev,v=faa.get_eigenvalues()
print(ev,v)
返回:
4.2 可视化展示
将特征值和因子个数的变化绘制成图形:
# 同样的数据绘制散点图和折线图
plt.scatter(range(1, df.shape[1] + 1), ev)
plt.plot(range(1, df.shape[1] + 1), ev)
# 显示图的标题和xy轴的名字
# 最好使用英文,中文可能乱码
plt.title("Scree Plot")
plt.xlabel("Factors")
plt.ylabel("Eigenvalue")
plt.grid() # 显示网格
plt.show() # 显示图形
返回:
从上面的图形中,我们明确地看到:选择2或3个因子就可以了
4.3 可视化中显示中文不报错
只需要在画图前,再导入一个库即可,见代码
import matplotlib as mpl
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
5.因子旋转
5.1 建立因子分析模型
在这里选择,最大方差化因子旋转
# 选择方式: varimax 方差最大化
# 选择固定因子为 2 个
faa_two = FactorAnalyzer(2,rotation='varimax')
faa_two.fit(df)
返回:
ratation参数的其他取值情况:
varimax (orthogonal rotation)
promax (oblique rotation)
oblimin (oblique rotation)
oblimax (orthogonal rotation)
quartimin (oblique rotation)
quartimax (orthogonal rotation)
equamax (orthogonal rotation)
5.2 查看因子方差-get_communalities()
查看公因子方差
# 公因子方差
faa_two.get_communalities()
返回:
查看每个变量的公因子方差数据
pd.DataFrame(faa_two.get_communalities(),index=df.columns)
返回:
5.3 查看旋转后的特征值
faa_two.get_eigenvalues()
返回:
pd.DataFrame(faa_two.get_eigenvalues())
返回:
5.4 查看成分矩阵
查看它们构成的成分矩阵:
# 变量个数*因子个数
faa_two.loadings_
返回:
如果转成DataFrame格式,index就是我们的变量,columns就是指定的因子factor。转DataFrame格式后的数据:
pd.DataFrame(faa_two.loadings_,index=df.columns)
返回:
5.5 查看因子贡献率
通过理论部分的解释,我们发现每个因子都对变量有一定的贡献,存在某个贡献度的值,在这里查看3个和贡献度相关的指标:
总方差贡献:variance (numpy array) – The factor variances
方差贡献率:proportional_variance (numpy array) – The proportional factor variances
累积方差贡献率:cumulative_variances (numpy array) – The cumulative factor variances
我们来看一下总方差贡献吧
faa_two.get_factor_variance()
返回:
6.隐藏变量可视化
为了更直观地观察每个隐藏变量和哪些特征的关系比较大,进行可视化展示,为了方便取上面相关系数的绝对值:
df1 = pd.DataFrame(np.abs(faa_two.loadings_),index=df.columns)
print(df1)
返回:
然后我们通过热力图将系数矩阵绘制出来:
# 绘图
plt.figure(figsize = (14,14))
ax = sns.heatmap(df1, annot=True, cmap="BuPu")
# 设置y轴字体大小
ax.yaxis.set_tick_params(labelsize=15)
plt.title("Factor Analysis", fontsize="xx-large")
# 设置y轴标签
plt.ylabel("Sepal Width", fontsize="xx-large")
# 显示图片
plt.show()
# 保存图片
# plt.savefig("factorAnalysis", dpi=500)
返回:
7.转成新变量
上面我们已经知道了2个因子比较合适,可以将原始数据转成2个新的特征,具体转换方式为:
faa_two.transform(df)
返回:
转成DataFrame格式后数据展示效果更好:
df2 = pd.DataFrame(faa_two.transform(df))
print(df2)
返回:
七、参考资料
1、Factor Analysis:Factor Analysis with Python — DataSklr
2、多因子分析:因子分析(factor analysis)例子–Python | 文艺数学君
3、factor_analyzer package
的官网使用手册:factor_analyzer package — factor_analyzer 0.3.1 documentation
4、浅谈主成分分析和因子分析:浅谈主成分分析与因子分析 - 知乎
来源:https://blog.csdn.net/qq_25990967/article/details/122566533


猜你喜欢
- 本文详细讲述了CI框架整合smarty步骤。分享给大家供大家参考,具体如下:Ci结合smarty的配置步骤:1. 第一步配置ci和下载sma
- Observer模式也叫观察者模式,是由GoF提出的23种软件设计模式的一种。Observer模式是行为模式之一,它的作用是当一个对象的状态
- 在LintCode上练习遇到这个问题,查阅资料找到多种方法,总结如下。输入输出123321第一种:整数方法取余取整实现class Solut
- 我就废话不多说了,直接上代码吧!from os import listdirimport osfrom time import timeim
- Turtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x、纵轴为y的坐标系原点,(0,0)
- 相信没有人不知道 Firebug 是什么东西,但有时候我们糟糕的代码不想让同行轻松的使用 F12 就能一览无遗。那么怎么办呢?这里有个猥琐的
- 删除链表中重复的结点: 定义两个指针pre和current两个指针同时往后移动,current指针如果与后一个结点值相同,就独自往前走直到没
- el-col-group"el-col-group" 是一个 Vue.js 函数式组件,允许您在 "el-ta
- 其实这个错误按字面意思就是不能打开mysql.event表,那么就是权限问题导致的。一般mysql也无法运行。在 本地计算机 无法启动 My
- 1.图像金字塔理论基础图像金字塔是图像多尺度表达的一种,是一种以多分辨率来解释图像的有效但概念简单的结构。一幅图像的金字塔是一系列以金字塔形
- 一、环境win10、Python3.6、OpenCV3.x;编译器:pycharm5.0.3二、实现目标根据需要追踪的物体颜色,设定阈值,在
- 假设,你现在维护一个支持邮箱登录的系统,用户表是这么定义的:create table SUser( ID bigint unsig
- 背景:在需求开发过程中,有的接口返回的结果中有很多字段需要展示到页面上。通常可以将这些字段在.vue文件中封装为计算属性,或者重新将对应字段
- 什么是锁锁的本质,就是一种资源,是由操作系统维护的一种专门用于同步的资源比如说互斥锁,说白了就是一种互斥的资源。只能有一个进程(线程)占有。
- 下面开始优化下my.conf文件(这里的优化只是在mysql本身的优化,之前安装的时候也要有优化)cat /etc/my.cnf# For
- 清除浮动一个凡是做页面的人都会遇到的一个东西,但是是否大家都能够清楚的知道,全方位的了解呢?于是一闲下来了马上写了这样的一篇文章,不能讲面面
- 一、简介Supervisor 是一款 Python 开发的进程管理系统,允许用户监视和控制 Linux 上的进程,能将一个普通命令行进程变为
- 网上有很多方法能够过去到IP地址归属地的脚本,但是我发现淘宝IP地址库的信息更详细些,所以用shell写个脚本来处理日常工作中一些IP地址分
- 查看python3.4.1文档,发现对于decimal模块的讲解非常多,由此可见其功能也很强大(下面算是把我认为比较重要的半翻译半学习吧~)
- pycharm每次新建项目都需要重新安装库,解决方法如下:新建项目时自定义选择库(自己安装python位置),不要创建新的(如下图)第一完成