python em算法的实现
作者:返回主页chenxiangzhen 发布时间:2021-09-18 11:45:30
标签:python,em,算法
'''
数据集:伪造数据集(两个高斯分布混合)
数据集长度:1000
------------------------------
运行结果:
----------------------------
the Parameters set is:
alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0
----------------------------
the Parameters predict is:
alpha0:0.4, mu0:0.6, sigmod0:-1.7, alpha1:0.7, mu1:0.7, sigmod1:0.9
----------------------------
'''
import numpy as np
import random
import math
import time
def loadData(mu0, sigma0, mu1, sigma1, alpha0, alpha1):
'''
初始化数据集
这里通过服从高斯分布的随机函数来伪造数据集
:param mu0: 高斯0的均值
:param sigma0: 高斯0的方差
:param mu1: 高斯1的均值
:param sigma1: 高斯1的方差
:param alpha0: 高斯0的系数
:param alpha1: 高斯1的系数
:return: 混合了两个高斯分布的数据
'''
# 定义数据集长度为1000
length = 1000
# 初始化第一个高斯分布,生成数据,数据长度为length * alpha系数,以此来
# 满足alpha的作用
data0 = np.random.normal(mu0, sigma0, int(length * alpha0))
# 第二个高斯分布的数据
data1 = np.random.normal(mu1, sigma1, int(length * alpha1))
# 初始化总数据集
# 两个高斯分布的数据混合后会放在该数据集中返回
dataSet = []
# 将第一个数据集的内容添加进去
dataSet.extend(data0)
# 添加第二个数据集的数据
dataSet.extend(data1)
# 对总的数据集进行打乱(其实不打乱也没事,只不过打乱一下直观上让人感觉已经混合了
# 读者可以将下面这句话屏蔽以后看看效果是否有差别)
random.shuffle(dataSet)
#返回伪造好的数据集
return dataSet
def calcGauss(dataSetArr, mu, sigmod):
'''
根据高斯密度函数计算值
依据:“9.3.1 高斯混合模型” 式9.25
注:在公式中y是一个实数,但是在EM算法中(见算法9.2的E步),需要对每个j
都求一次yjk,在本实例中有1000个可观测数据,因此需要计算1000次。考虑到
在E步时进行1000次高斯计算,程序上比较不简洁,因此这里的y是向量,在numpy
的exp中如果exp内部值为向量,则对向量中每个值进行exp,输出仍是向量的形式。
所以使用向量的形式1次计算即可将所有计算结果得出,程序上较为简洁
:param dataSetArr: 可观测数据集
:param mu: 均值
:param sigmod: 方差
:return: 整个可观测数据集的高斯分布密度(向量形式)
'''
# 计算过程就是依据式9.25写的,没有别的花样
result = (1 / (math.sqrt(2*math.pi)*sigmod**2)) * np.exp(-1 * (dataSetArr-mu) * (dataSetArr-mu) / (2*sigmod**2))
# 返回结果
return result
def E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1):
'''
EM算法中的E步
依据当前模型参数,计算分模型k对观数据y的响应度
:param dataSetArr: 可观测数据y
:param alpha0: 高斯模型0的系数
:param mu0: 高斯模型0的均值
:param sigmod0: 高斯模型0的方差
:param alpha1: 高斯模型1的系数
:param mu1: 高斯模型1的均值
:param sigmod1: 高斯模型1的方差
:return: 两个模型各自的响应度
'''
# 计算y0的响应度
# 先计算模型0的响应度的分子
gamma0 = alpha0 * calcGauss(dataSetArr, mu0, sigmod0)
# 模型1响应度的分子
gamma1 = alpha1 * calcGauss(dataSetArr, mu1, sigmod1)
# 两者相加为E步中的分布
sum = gamma0 + gamma1
# 各自相除,得到两个模型的响应度
gamma0 = gamma0 / sum
gamma1 = gamma1 / sum
# 返回两个模型响应度
return gamma0, gamma1
def M_step(muo, mu1, gamma0, gamma1, dataSetArr):
# 依据算法9.2计算各个值
# 这里没什么花样,对照书本公式看看这里就好了
mu0_new = np.dot(gamma0, dataSetArr) / np.sum(gamma0)
mu1_new = np.dot(gamma1, dataSetArr) / np.sum(gamma1)
sigmod0_new = math.sqrt(np.dot(gamma0, (dataSetArr - muo)**2) / np.sum(gamma0))
sigmod1_new = math.sqrt(np.dot(gamma1, (dataSetArr - mu1)**2) / np.sum(gamma1))
alpha0_new = np.sum(gamma0) / len(gamma0)
alpha1_new = np.sum(gamma1) / len(gamma1)
# 将更新的值返回
return mu0_new, mu1_new, sigmod0_new, sigmod1_new, alpha0_new, alpha1_new
def EM_Train(dataSetList, iter=500):
'''
根据EM算法进行参数估计
算法依据“9.3.2 高斯混合模型参数估计的EM算法” 算法9.2
:param dataSetList:数据集(可观测数据)
:param iter: 迭代次数
:return: 估计的参数
'''
# 将可观测数据y转换为数组形式,主要是为了方便后续运算
dataSetArr = np.array(dataSetList)
# 步骤1:对参数取初值,开始迭代
alpha0 = 0.5
mu0 = 0
sigmod0 = 1
alpha1 = 0.5
mu1 = 1
sigmod1 = 1
# 开始迭代
step = 0
while (step < iter):
# 每次进入一次迭代后迭代次数加1
step += 1
# 步骤2:E步:依据当前模型参数,计算分模型k对观测数据y的响应度
gamma0, gamma1 = E_step(dataSetArr, alpha0, mu0, sigmod0, alpha1, mu1, sigmod1)
# 步骤3:M步
mu0, mu1, sigmod0, sigmod1, alpha0, alpha1 = M_step(mu0, mu1, gamma0, gamma1, dataSetArr)
# 迭代结束后将更新后的各参数返回
return alpha0, mu0, sigmod0, alpha1, mu1, sigmod1
if __name__ == '__main__':
start = time.time()
# 设置两个高斯模型进行混合,这里是初始化两个模型各自的参数
# 见“9.3 EM算法在高斯混合模型学习中的应用”
# alpha是“9.3.1 高斯混合模型” 定义9.2中的系数α
# mu0是均值μ
# sigmod是方差σ
# 在设置上两个alpha的和必须为1,其他没有什么具体要求,符合高斯定义就可以
alpha0 = 0.3 # 系数α
mu0 = -2 # 均值μ
sigmod0 = 0.5 # 方差σ
alpha1 = 0.7 # 系数α
mu1 = 0.5 # 均值μ
sigmod1 = 1 # 方差σ
# 初始化数据集
dataSetList = loadData(mu0, sigmod0, mu1, sigmod1, alpha0, alpha1)
#打印设置的参数
print('---------------------------')
print('the Parameters set is:')
print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (
alpha0, alpha1, mu0, mu1, sigmod0, sigmod1
))
# 开始EM算法,进行参数估计
alpha0, mu0, sigmod0, alpha1, mu1, sigmod1 = EM_Train(dataSetList)
# 打印参数预测结果
print('----------------------------')
print('the Parameters predict is:')
print('alpha0:%.1f, mu0:%.1f, sigmod0:%.1f, alpha1:%.1f, mu1:%.1f, sigmod1:%.1f' % (
alpha0, alpha1, mu0, mu1, sigmod0, sigmod1
))
# 打印时间
print('----------------------------')
print('time span:', time.time() - start)
来源:https://www.cnblogs.com/chenxiangzhen/archive/2004/01/13/10435969.html


猜你喜欢
- 还记得曾经被“滑稽”刷屏的场景吗?在这个各种表情包横行的时代,emoji表情还能依然占据一定的地位!这篇文章将带你了解一下,python与e
- MySQL理论上使用的内存 = 全局共享内存 + max_connections×线程独享内存。也就是:innodb_buffer_pool
- 迭代器(Iterable):能直接作用于for循环的对象,统称可迭代对象。例如:list、tuple、set、str、generator都是
- 一、引言 背景我们在做系统时,很多时候是处理实时的任务,请求来了马上就处理,然后立刻给用户以反馈。但有时也会遇到非实时的任务,比如确定的时间
- Birdseye是一个Python调试器,它在函数调用中记录表达式的值,并让你在函数退出后轻松查看它们,例如:无论你如何运行或编辑代码,都可
- 首先我们需要几个包:requests, lxml, bs4, pymongo, redis1. 创建爬虫对象,具有的几个行为:抓取页面,解析
- 前言:中文编码问题一直是程序员头疼的问题,而Python2中的字符编码足矣令新手抓狂。本文将尽量用通俗的语言带大家彻底的了解字符编码以及Py
- 创建变长数组类型CREATE TYPE varray_type AS VARRAY(2) OF VARCHAR2(50);这个变长数组最多可
- 本文实例讲述了Python使用pyodbc访问数据库操作方法。数据库连接数据库连接网上大致有两种方法,一种是使用pyodbc,另一种是使用w
- 1.查看binlog是否开启show variables like '%log_bin%';2.查看数据文件存放路径:bin
- 目录楔子鼠标操作鼠标监控鼠标键盘监控楔子python是一门很神奇的语言,原因在于它有很多的库可以实现各种意想不到的功能。当然我们这次介绍的库
- 以下的文章主要是介绍MySQL5创建存储过程的实例演示,MySQL5创建存储在实际操作中应用的频率还是很高的,以下就是MySQL5创建存储过
- 如题,我有一个模板,我想根据需求复制模板中间的某一页多次,比如复制第五页,然后复制3次,那么第六页,第七页,第八页都是和第五页一模一样的pp
- 服务器的CentOS 7中自带的python版本是python-2.7.5,需要再安装一个 python-3.8.1一、查看版本安
- 前言在安装MySQL的时候会默认初始化几个MySQL运行所需的数据库:mysql, sys, information_schema, per
- python现在的版本,主要是python2和python3两个大版本,这两个版本有很大的不同。当我们在自己电脑上同时安装了python2.
- 以下是我开发时碰到的问题以及心得经验,花了些时间调试,贴出来避免大家少走弯路,如有错误欢迎指正,持续更新ing xml文件尽量以
- 惊现!表面下的隐藏信息——浅谈信息可视化1910年,病卧床上的魏格那(德国气象学家,以“大陆漂移学说”闻名),无意地注视着墙上的世界地图……
- 问题描述使用 Navicat 导入之前转储好的 sql 文件,报错错误原因在信息日志当中往上翻,发现没有选择数据库,所以报错的原因就是没有提
- 1 输出大写字母、小写字母、大小写字母、数字、大小写字母和数字1.1输出小写:找到小写a(97)到z(122)的的ASCII码,然后转义为字