网络编程
位置:首页>> 网络编程>> Python编程>> TensorFlow Autodiff自动微分详解

TensorFlow Autodiff自动微分详解

作者:Marks & Co  发布时间:2021-06-02 10:33:02 

标签:TensorFlow,Autodiff,自动微分

如下所示:


with tf.GradientTape(persistent=True) as tape:
z1 = f(w1, w2 + 2.)
z2 = f(w1, w2 + 5.)
z3 = f(w1, w2 + 7.)
z = [z1,z3,z3]
[tape.gradient(z, [w1, w2]) for z in (z1, z2, z3)]

输出结果


[[<tf.Tensor: id=56906, shape=(), dtype=float32, numpy=40.0>,
<tf.Tensor: id=56898, shape=(), dtype=float32, numpy=10.0>],
[<tf.Tensor: id=56919, shape=(), dtype=float32, numpy=46.0>,
<tf.Tensor: id=56911, shape=(), dtype=float32, numpy=10.0>],
[<tf.Tensor: id=56932, shape=(), dtype=float32, numpy=50.0>,
<tf.Tensor: id=56924, shape=(), dtype=float32, numpy=10.0>]]
with tf.GradientTape(persistent=True) as tape:
z1 = f(w1, w2 + 2.)
z2 = f(w1, w2 + 5.)
z3 = f(w1, w2 + 7.)
z = [z1,z2,z3]
tape.gradient(z, [w1, w2])

输出结果

[<tf.Tensor: id=57075, shape=(), dtype=float32, numpy=136.0>,

<tf.Tensor: id=57076, shape=(), dtype=float32, numpy=30.0>]

总结:如果对一个listz=[z1,z2,z3]求微分,其结果将自动求和,而不是返回z1、z2和z3各自对[w1,w2]的微分。

补充知识:Python/Numpy 矩阵运算符号@

如下所示:

A = np.matrix('3 1; 8 2')

B = np.matrix('6 1; 7 9')


A@B
matrix([[25, 12],
 [62, 26]])

来源:https://www.cnblogs.com/yaos/p/12753268.html

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com