Python几种绘制时间线图的方法
作者:zhouluobo 发布时间:2021-08-16 10:43:05
Matplotlib 制作
Matplotlib 作为 Python 家族最为重要的可视化工具,其基本的 API 以及绘制流程还是需要掌握的。尤其是该库的灵活程度以及作为众多工具的基础,重要性不言而喻
下面我们来看下该如何绘制一个时间线图表
导入库以及设置 XY 轴数据
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
y1 = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
x1 = [4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
因为是通过折线图来实现时间线效果,为了达到一条竖线的情况,这里设置了 X 轴数值都相同,Y 轴数值等差分布
创建画布及标题:
fig, ax = plt.subplots(sharey=True, figsize=(7, 4))
ax.plot(x1, y1, label='First line', linewidth=3, color='r', marker='o', markerfacecolor='white', markersize=12)
plt.title('萝卜大杂烩')
plt.suptitle('历史上的今天', fontsize=16, color='red')
此时效果如下:
接下来我们设置时间线两边的数据
# 右侧数据
right_y_year = 0.95
right_y_text = 0.9
year_right = 1931
for i in range(5):
plt.text(0.57, right_y_year, str(year_right+1), fontsize=15, horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, color='black')
plt.text(0.75, right_y_text, "从百草园到三味书屋-鲁迅" + str(i), fontsize=15, horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, color='red')
right_y_year -= 0.2
right_y_text -= 0.2
year_right += 1
# 左侧数据
left_y_year = 0.85
left_y_text = 0.8
year_left = 1941
for i in range(5):
plt.text(0.43, left_y_year, str(year_left+1), fontsize=15, horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, color='black')
plt.text(0.2, left_y_text, "从百草园到三味书屋-鲁迅" + str(i), fontsize=15, horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, color='red', url='https://www.baidu.com')
left_y_year -= 0.2
left_y_text -= 0.2
year_left += 1
这里主要使用了 text 函数,为时间线轴两边分别添加数据
如果我们还想要添加个人的其他信息,比如公众号二维码等,可以在指定位置增加图片,同时去掉坐标轴
# 增加图片
img = plt.imread('二维码.png')
ax2 = plt.axes((0.7, 0.1, 0.3, 0.3))
ax2.imshow(img, origin='lower', alpha=0.5)
ax2.axis('off')
ax.axis('off')
plt.show()
可以看出,由于 text 函数是通过坐标来确定文字显示的位置的,所以我们的时间线轴两边的数据分布还是不是特别完美,不知道是否有其他的更加方便的方法来设置
Plotly 绘制
Plotly 作为 Python 家族另一个非常强大的可视化工具,同样可以完成时间线图的绘制
在绘图之前,完美先处理数据
这里使用的数据是2020年全年的微博热搜数据
import pandas as pd
weibo = pd.read_csv("weibo_2020.csv")
def deal_date(frame):
tmp = frame.split('-')
return tmp[0] + '-' + tmp[1]
weibo['new_date'] = weibo['date'].apply(lambda x : deal_date(x))
key_list_right = []
for i in range(1, 12, 2):
if i < 10:
mydate = '2020-0%s' % str(i)
else:
mydate = '2020-%s' % str(i)
keyword = weibo[weibo['new_date'] == mydate].sort_values(by='searchCount', ascending=False)['keyword'].tolist()[0]
searchCount = weibo[weibo['new_date'] == mydate].sort_values(by='searchCount', ascending=False)['searchCount'].tolist()[0]
mount = str(i) + '月'
content = ','.join([keyword, str(searchCount) + '搜索量', mount])
key_list_right.append(content)
print(key_list_right)
Output:
['最新疫情地图,18130201搜索量,1月',
'肖战工作室道歉,13117531搜索量,3月',
'何鸿燊去世,15302424搜索量,5月',
'高考作文,15647446搜索量,7月',
'乘风破浪的姐姐成团之夜,8226994搜索量,9月',
'特朗普,7310000搜索量,11月']
可以看到,通过上面的数据处理,我们成功提取了1、3、5、7、9以及11月的当月搜索量最高的热搜标题,同理可以获取到双月份的热搜标题数据
下面开始作图:
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
from plotly.graph_objs import *
layout = Layout(
paper_bgcolor='rgba(0,0,0,0)',
plot_bgcolor='rgba(0,0,0,0)',
title={'text': '微博热搜', 'x': 0.5},
yaxis={'title': 'Proportion (%)'}
)
fig = go.Figure(layout=layout)
fig.add_traces([go.Scatter(x=[2,2,2,2,2,2], y=[5, 10, 15, 20, 25, 30], text=key_list_right, textposition="bottom right", mode="lines+text"),
go.Scatter(x=[2,2,2,2,2,2], y=[5, 10, 15, 20, 25, 30], textposition="top left", mode="lines+text", text=key_list_left)])
fig.update_traces(showlegend=False)
fig.update_layout(xaxis=dict(visible=False), yaxis=dict(visible=False))
fig.show()
通过 Plotly 绘图就相对简单很多了,直接使用 text 参数把我们得到的热搜数据添加上即可
最终效果如下:
效果很朴素,是因为我们没有进行过多的样式设置,大家可以自行探索下不同样式啊
Excel 绘制
上面的两种方法都需要有一定的代码基础,下面介绍的 Excel 方法则可以说是人人都能完成,一起来看看吧
先来看看最终的效果:
首先准备数据,我们在新建的 Excel 文档中创建如下数据
然后插入散点图:
先插入一个空白散点图,然后将 X 轴设置为【年份】,Y 轴设置为【位置】,再把 Y 轴和网格线都删除
接下来我们美化一下 X 轴:
我们双击 X 轴,调出格式窗口,在坐标轴选项标签中设置【单位】,将【小】改为1,设置【刻度线】,将【主刻度线】设置为交叉。再点击【油漆桶】,选择一个线条的颜色,将宽度调整为2,将【结尾箭头类型】调整为向右箭头
再接下来我们把 X 轴连接起来:
首先选择一个散点,添加误差线。然后把横向的误差线设置为无轮廓,再选中竖向的误差线,把【垂直误差线】设置为负偏差,再把误差量设置为100%,最后再给竖向误差线调整样式即可
下面开始添加数据:
我们把公司的各种大事件添加到数据表当中
向图表中添加【数据标签】,即数据中事件那一列,然后再去掉 Y 值即可
最后我们还可以通过 Excel 自带的各种图标进行美化操作
来源:https://blog.csdn.net/zhouwei_1989_/article/details/126253557


猜你喜欢
- 姿态检测是计算机视觉领域的一个活跃研究领域。你可以从字面上找到数百篇研究论文和几个试图解决姿势检测问题的模型。之所以有如此多的机器学习爱好者
- 前言在翻Golang官方库的过程中,发现一个有趣的库golang.org/x/time ,里面只有一个类rate,研究了一下发现它是一个限流
- Python基础环境搭建CENTOS 6.X 系列默认安装的 Python 2.6 ,目前开发中主要是使用 Python 2.7 ,这两个版
- select user_name,count(*) as count from user_table group by user_name
- 一、事务:事务是逻辑上的一组操作,要么都成功,要么都失败!——————————————————————————————————1、SQL执行
- 每次抽取后都重新洗牌。计算10000次随机抽取可得到同花的几率。我做的比较复杂,分别累计了四种花色分别出现了几次import randoml
- 许多人利用Session变量来开发ASP(Active Server Pages)。这些变量与任何编程语言中通用的变量非常相似,并且具有和通
- 想到TDE(Transparent Data Encryption)。 TDE MSDN 说明: “透明数据加密”(TDE) 可对数据和日志
- 我们一般都认为TRUNCATE是一种不可回滚的操作,它会删除表中的所有数据以及重置Identity列。如果你在事务中进行TRUNCATE操作
- 躺着赚钱一位匿名知乎网友爆料用Python写了自动化交易程序,2年躺着赚了200万!相当于普通程序员10年的工资,此刻的心情...你懂的!不
- 今天写了个小功能,看起来挺简单,写的过程中发现了些坑。1.div没有disabled的属性,所以得写成button2.disabled在da
- mysql 创建数据库时指定编码很重要,很多开发者都使用了默认编码,乱码问题可是防不胜防。制定数据库的编码可以很大程度上避免倒入导出带来的乱
- 我的主机内存只有100G,现在要全表扫描一个200G大表,会不会把DB主机的内存用光?逻辑备份时,可不就是做整库扫描吗?若这样就会把内存吃光
- pytorch的广播语义(broadcasting semantics),和numpy的很像,所以可以先看看numpy的文档:1、什么是广播
- '/***' 作 者 :冻结回忆'修改时间:2007-10-17'功能说明
- 本文实例讲述了Python django框架应用中实现获取访问者ip地址。分享给大家供大家参考,具体如下:在django官方文档中有一段对r
- Python import的搜索路径import的搜索路径为:搜索「内置模块」(built-in module)搜索 sys.path 中的
- 一、环境介绍Python版本 : Python3.8开发工具 : Pycharm 21第三方库 : requests还会用到的是 Pytho
- 本文实例为大家分享了Python Web静态服务器的具体代码,供大家参考,具体内容如下功能:用户访问服务器可以返回指定页面 步骤: 1.创建
- 实战场景这次被我们盯上的平台是【SMZDM】。本次目标站点是:aHR0cHM6Ly93d3cuc216ZG0uY29tLw==。正式开始前,