python神经网络使用tensorflow构建长短时记忆LSTM
作者:Bubbliiiing 发布时间:2021-10-13 19:23:39
LSTM简介
1、RNN的梯度消失问题
在过去的时间里我们学习了RNN循环神经网络,其结构示意图是这样的:
其存在的最大问题是,当w1、w2、w3这些值小于0时,如果一句话够长,那么其在神经网络进行反向传播与前向传播时,存在梯度消失的问题。
0.925=0.07,如果一句话有20到30个字,那么第一个字的隐含层输出传递到最后,将会变为原来的0.07倍,相比于最后一个字的影响,大大降低。
其具体情况是这样的:
长短时记忆网络就是为了解决梯度消失的问题出现的。
2、LSTM的结构
原始RNN的隐藏层只有一个状态h,从头传递到尾,它对于短期的输入非常敏感。
如果我们再增加一个状态c,让它来保存长期的状态,问题就可以解决了。
对于RNN和LSTM而言,其两个step单元的对比如下。
我们把LSTM的结构按照时间维度展开:
我们可以看出,在n时刻,LSTM的输入有三个:
1、当前时刻网络的输入值;
2、上一时刻LSTM的输出值;
3、上一时刻的单元状态。
LSTM的输出有两个:
1、当前时刻LSTM输出值;
2、当前时刻的单元状态。
3、LSTM独特的门结构
LSTM用两个门来控制单元状态cn的内容:
1、遗忘门(forget gate),它决定了上一时刻的单元状态cn-1有多少保留到当前时刻;
2、输入门(input gate),它决定了当前时刻网络的输入c’n有多少保存到单元状态。
LSTM用一个门来控制当前输出值hn的内容:
输出门(output gate),它决定了当前时刻单元状态cn有多少输出。
tensorflow中LSTM的相关函数
tf.contrib.rnn.BasicLSTMCell
tf.contrib.rnn.BasicLSTMCell(
num_units,
forget_bias=1.0,
state_is_tuple=True,
activation=None,
reuse=None,
name=None,
dtype=None
)
num_units:RNN单元中的神经元数量,即输出神经元数量。
forget_bias:偏置增加了忘记门。从CudnnLSTM训练的检查点(checkpoin)恢复时,必须手动设置为0.0。
state_is_tuple:如果为True,则接受和返回的状态是c_state和m_state的2-tuple;如果为False,则他们沿着列轴连接。False即将弃用。
activation:激活函数。
reuse:描述是否在现有范围中重用变量。如果不为True,并且现有范围已经具有给定变量,则会引发错误。
name:层的名称。
dtype:该层的数据类型。
在使用时,可以定义为:
lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
在定义完成后,可以进行状态初始化:
self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
tf.nn.dynamic_rnn
tf.nn.dynamic_rnn(
cell,
inputs,
sequence_length=None,
initial_state=None,
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
cell:上文所定义的lstm_cell。
inputs:RNN输入。如果time_major==false(默认),则必须是如下shape的tensor:[batch_size,max_time,…]或此类元素的嵌套元组。如果time_major==true,则必须是如下形状的tensor:[max_time,batch_size,…]或此类元素的嵌套元组。
sequence_length:Int32/Int64矢量大小。用于在超过批处理元素的序列长度时复制通过状态和零输出。因此,它更多的是为了性能而不是正确性。
initial_state:上文所定义的_init_state。
dtype:数据类型。
parallel_iterations:并行运行的迭代次数。那些不具有任何时间依赖性并且可以并行运行的操作将是。这个参数用时间来交换空间。值>>1使用更多的内存,但花费的时间更少,而较小的值使用更少的内存,但计算需要更长的时间。
time_major:输入和输出tensor的形状格式。如果为真,这些张量的形状必须是[max_time,batch_size,depth]。如果为假,这些张量的形状必须是[batch_size,max_time,depth]。使用time_major=true会更有效率,因为它可以避免在RNN计算的开始和结束时进行换位。但是,大多数TensorFlow数据都是批处理主数据,因此默认情况下,此函数为False。
scope:创建的子图的可变作用域;默认为“RNN”。
在LSTM的最后,需要用该函数得出结果。
self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)
返回的是一个元组 (outputs, state):
outputs
:LSTM的最后一层的输出,是一个tensor。如果为time_major== False,则它的shape为[batch_size,max_time,cell.output_size]。如果为time_major== True,则它的shape为[max_time,batch_size,cell.output_size]。
states
:states是一个tensor。state是最终的状态,也就是序列中最后一个cell输出的状态。一般情况下states的形状为 [batch_size, cell.output_size],但当输入的cell为BasicLSTMCell时,states的形状为[2,batch_size, cell.output_size ],其中2也对应着LSTM中的cell state和hidden state。
整个LSTM的定义过程为:
def add_input_layer(self,):
#X最开始的形状为(256 batch,28 steps,28 inputs)
#转化为(256 batch*28 steps,128 hidden)
l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='to_2D')
#获取Ws和Bs
Ws_in = self._weight_variable([self.input_size, self.cell_size])
bs_in = self._bias_variable([self.cell_size])
#转化为(256 batch*28 steps,256 hidden)
with tf.name_scope('Wx_plus_b'):
l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in
# (batch * n_steps, cell_size) ==> (batch, n_steps, cell_size)
# (256*28,256)->(256,28,256)
self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='to_3D')
def add_cell(self):
#神经元个数
lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
#每一次传入的batch的大小
with tf.name_scope('initial_state'):
self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
#不是主列
self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)
def add_output_layer(self):
#设置Ws,Bs
Ws_out = self._weight_variable([self.cell_size, self.output_size])
bs_out = self._bias_variable([self.output_size])
# shape = (batch,output_size)
# (256,10)
with tf.name_scope('Wx_plus_b'):
self.pred = tf.matmul(self.cell_final_state[-1], Ws_out) + bs_out
全部代码
该例子为手写体识别例子,将手写体的28行分别作为每一个step的输入,输入维度均为28列。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
mnist = input_data.read_data_sets("MNIST_data",one_hot = "true")
BATCH_SIZE = 256 # 每一个batch的数据数量
TIME_STEPS = 28 # 图像共28行,分为28个step进行传输
INPUT_SIZE = 28 # 图像共28列
OUTPUT_SIZE = 10 # 共10个输出
CELL_SIZE = 256 # RNN 的 hidden unit size,隐含层神经元的个数
LR = 1e-3 # learning rate,学习率
def get_batch(): #获取训练的batch
batch_xs,batch_ys = mnist.train.next_batch(BATCH_SIZE)
batch_xs = batch_xs.reshape([BATCH_SIZE,TIME_STEPS,INPUT_SIZE])
return [batch_xs,batch_ys]
class LSTMRNN(object): #构建LSTM的类
def __init__(self, n_steps, input_size, output_size, cell_size, batch_size):
self.n_steps = n_steps
self.input_size = input_size
self.output_size = output_size
self.cell_size = cell_size
self.batch_size = batch_size
#输入输出
with tf.name_scope('inputs'):
self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
self.ys = tf.placeholder(tf.float32, [None, output_size], name='ys')
#直接加层
with tf.variable_scope('in_hidden'):
self.add_input_layer()
#增加LSTM的cell
with tf.variable_scope('LSTM_cell'):
self.add_cell()
#直接加层
with tf.variable_scope('out_hidden'):
self.add_output_layer()
#计算损失值
with tf.name_scope('cost'):
self.compute_cost()
#训练
with tf.name_scope('train'):
self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)
#正确率计算
self.correct_pre = tf.equal(tf.argmax(self.ys,1),tf.argmax(self.pred,1))
self.accuracy = tf.reduce_mean(tf.cast(self.correct_pre,tf.float32))
def add_input_layer(self,):
#X最开始的形状为(256 batch,28 steps,28 inputs)
#转化为(256 batch*28 steps,128 hidden)
l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='to_2D')
#获取Ws和Bs
Ws_in = self._weight_variable([self.input_size, self.cell_size])
bs_in = self._bias_variable([self.cell_size])
#转化为(256 batch*28 steps,256 hidden)
with tf.name_scope('Wx_plus_b'):
l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in
# (batch * n_steps, cell_size) ==> (batch, n_steps, cell_size)
# (256*28,256)->(256,28,256)
self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='to_3D')
def add_cell(self):
#神经元个数
lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
#每一次传入的batch的大小
with tf.name_scope('initial_state'):
self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
#不是主列
self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)
def add_output_layer(self):
#设置Ws,Bs
Ws_out = self._weight_variable([self.cell_size, self.output_size])
bs_out = self._bias_variable([self.output_size])
# shape = (batch,output_size)
# (256,10)
with tf.name_scope('Wx_plus_b'):
self.pred = tf.matmul(self.cell_final_state[-1], Ws_out) + bs_out
def compute_cost(self):
self.cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(logits = self.pred,labels = self.ys)
)
def _weight_variable(self, shape, name='weights'):
initializer = np.random.normal(0.0,1.0 ,size=shape)
return tf.Variable(initializer, name=name,dtype = tf.float32)
def _bias_variable(self, shape, name='biases'):
initializer = np.ones(shape=shape)*0.1
return tf.Variable(initializer, name=name,dtype = tf.float32)
if __name__ == '__main__':
#搭建 LSTMRNN 模型
model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
#训练10000次
for i in range(10000):
xs, ys = get_batch() #提取 batch data
if i == 0:
#初始化data
feed_dict = {
model.xs: xs,
model.ys: ys,
}
else:
feed_dict = {
model.xs: xs,
model.ys: ys,
model.cell_init_state: state #保持 state 的连续性
}
#训练
_, cost, state, pred = sess.run(
[model.train_op, model.cost, model.cell_final_state, model.pred],
feed_dict=feed_dict)
#打印精确度结果
if i % 20 == 0:
print(sess.run(model.accuracy,feed_dict = {
model.xs: xs,
model.ys: ys,
model.cell_init_state: state #保持 state 的连续性
}))
来源:https://blog.csdn.net/weixin_44791964/article/details/99411004


猜你喜欢
- 前言平时我们在接收后端返回的json对象通常是一个字符串类型的object,所以一般我们要对这个object进行类型转化后,我们才能使用ob
- 自带验证器1、UniqueValidator用于验证(唯一)unique=True的字段,常用参数:queryset: required,用
- 投影变换(仿射变换)在数学中,线性变换是将一个向量空间映射到另一个向量空间的函数,通常由矩阵实现。如果映射保留向量加法和标量乘法,则映射被认
- 包 packageGo 包是 Go 语言的基本组成单元,一个 Go 程序就是一组包的集合,所有 Go 代码都位于包中Go 源码可以导入其他
- 前言在laravel项目开发中,经常使用到公共函数,那如何在laravel配置全局公共函数呢??下面话不多说了,来一起看看详细的介绍吧方法如
- 1. wheel介绍:.whl文件(WHL file)也称为轮子(wheel),这是用于python分发(distribution)的标准内
- 在空白的文本编辑器里打开一个崭新的文本,没有一行代码,出现在眼前的是一个充满了无限可能和希望的项目。可是,当数千行的代码写完之后,整个项目因
- 本文实例讲述了Python实现PS图像调整黑白效果。分享给大家供大家参考,具体如下:这里用Python 实现 PS 里的图像调整–黑白,PS
- 项目要求:读完题目,首先我们要确定程序思路我们要全部通过类去实现也就是 我们要实现管理员、学生、讲师、课程、教师五个类管理员类class A
- 按照固定的字符,拆分已有的字符串split(sep, n, expand = False):sep:用于分割的字符串n:分割为多少列expa
- 仿射密码思路:1、加解密公式:2、构造对应字典:3、代码实现构造字典,建立映射关系:# 构造字典,'A' --> 0
- 起步Python3 起,str 就采用了 Unicode 编码(注意这里并不是 utf8 编码,尽管 .py 文件默认编码是 utf8 )。
- 简介在Python开发和测试过程中主要有两种模式可以选择:脚本模式、命令行模式。在代码的开发和调试过程中使用脚本模式很方便,目前比较主流的命
- IE的有条件注释是一种专有的(因此是非标准的)、对常规(X)HTML注释的Miscrosoft扩展。顾名思义,有条件注释使你能够根据条件(比
- 前言之前搭建了一个ExtJS + spring + Oracle 的这样一个报表系统的框架。 因为其他部门的要求, 也需要这个Framewo
- 1.我们看到字典形式的数据如下所示list=[["2891-1", "D"],["2892
- 之前一直使用QtCreator,在设计界面时非常方便,python早就集成了Qt模块,在python中以pyQt的包存在,目前常用的是pyQ
- 1、 自定义菜单adminx.pyclass GlobalSetting(object): site_title = u'xxx后台
- @keyup.enter失效问题情况一(我遇到的情况)@keyup.enter外部存在form表单,并且form表单里只有一个input原因
- 导语带大家写个冷笑话生成器吧,感觉蛮有意思的。废话不多说,让我们愉快地开始吧~开发工具Python版本:3.7.8相关模块:pyqt5模块;