网络编程
位置:首页>> 网络编程>> Python编程>> 对Keras自带Loss Function的深入研究

对Keras自带Loss Function的深入研究

作者:Forskamse  发布时间:2021-08-27 03:18:24 

标签:Keras,Loss,Function

本文研究Keras自带的几个常用的Loss Function。

1. categorical_crossentropy VS. sparse_categorical_crossentropy

对Keras自带Loss Function的深入研究

对Keras自带Loss Function的深入研究

注意到二者的主要差别在于输入是否为integer tensor。在文档中,我们还可以找到关于二者如何选择的描述:

对Keras自带Loss Function的深入研究

解释一下这里的Integer target 与 Categorical target,实际上Integer target经过独热编码就变成了Categorical target,举例说明:


(类别数5)
Integer target: [1,2,4]
Categorical target: [[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1.]]

在Keras中提供了to_categorical方法来实现二者的转化:


from keras.utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

注意categorical_crossentropy和sparse_categorical_crossentropy的输入参数output,都是softmax输出的tensor。我们都知道softmax的输出服从多项分布,

因此categorical_crossentropy和sparse_categorical_crossentropy应当应用于多分类问题。

我们再看看这两个的源码,来验证一下:


https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def categorical_crossentropy(target, output, from_logits=False, axis=-1):
 """Categorical crossentropy between an output tensor and a target tensor.
 Arguments:
     target: A tensor of the same shape as `output`.
     output: A tensor resulting from a softmax
         (unless `from_logits` is True, in which
         case `output` is expected to be the logits).
     from_logits: Boolean, whether `output` is the
         result of a softmax, or is a tensor of logits.
     axis: Int specifying the channels axis. `axis=-1` corresponds to data
         format `channels_last', and `axis=1` corresponds to data format
         `channels_first`.
 Returns:
     Output tensor.
 Raises:
     ValueError: if `axis` is neither -1 nor one of the axes of `output`.
 """
 rank = len(output.shape)
 axis = axis % rank
 # Note: nn.softmax_cross_entropy_with_logits_v2
 # expects logits, Keras expects probabilities.
 if not from_logits:
   # scale preds so that the class probas of each sample sum to 1
   output = output / math_ops.reduce_sum(output, axis, True)
   # manual computation of crossentropy
   epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
   output = clip_ops.clip_by_value(output, epsilon_, 1. - epsilon_)
   return -math_ops.reduce_sum(target * math_ops.log(output), axis)
 else:
   return nn.softmax_cross_entropy_with_logits_v2(labels=target, logits=output)
--------------------------------------------------------------------------------------------------------------------
def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1):
 """Categorical crossentropy with integer targets.
 Arguments:
     target: An integer tensor.
     output: A tensor resulting from a softmax
         (unless `from_logits` is True, in which
         case `output` is expected to be the logits).
     from_logits: Boolean, whether `output` is the
         result of a softmax, or is a tensor of logits.
     axis: Int specifying the channels axis. `axis=-1` corresponds to data
         format `channels_last', and `axis=1` corresponds to data format
         `channels_first`.
 Returns:
     Output tensor.
 Raises:
     ValueError: if `axis` is neither -1 nor one of the axes of `output`.
 """
 rank = len(output.shape)
 axis = axis % rank
 if axis != rank - 1:
   permutation = list(range(axis)) + list(range(axis + 1, rank)) + [axis]
   output = array_ops.transpose(output, perm=permutation)
 # Note: nn.sparse_softmax_cross_entropy_with_logits
 # expects logits, Keras expects probabilities.
 if not from_logits:
   epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
   output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
   output = math_ops.log(output)
 output_shape = output.shape
 targets = cast(flatten(target), 'int64')
 logits = array_ops.reshape(output, [-1, int(output_shape[-1])])
 res = nn.sparse_softmax_cross_entropy_with_logits(
     labels=targets, logits=logits)
 if len(output_shape) >= 3:
   # If our output includes timesteps or spatial dimensions we need to reshape
   return array_ops.reshape(res, array_ops.shape(output)[:-1])
 else:
   return res

categorical_crossentropy计算交叉熵时使用的是nn.softmax_cross_entropy_with_logits_v2( labels=targets, logits=logits),而sparse_categorical_crossentropy使用的是nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits),二者本质并无区别,只是对输入参数logits的要求不同,v2要求的是logits与labels格式相同(即元素也是独热的),而sparse则要求logits的元素是个数值,与上面Integer format和Categorical format的对比含义类似。

综上所述,categorical_crossentropy和sparse_categorical_crossentropy只不过是输入参数target类型上的区别,其loss的计算在本质上没有区别,就是交叉熵;二者是针对多分类(Multi-class)任务的。

2. Binary_crossentropy

对Keras自带Loss Function的深入研究

二元交叉熵,从名字中我们可以看出,这个loss function可能是适用于二分类的。文档中并没有详细说明,那么直接看看源码吧:


https://github.com/tensorflow/tensorflow/blob/r1.13/tensorflow/python/keras/backend.py
--------------------------------------------------------------------------------------------------------------------
def binary_crossentropy(target, output, from_logits=False):
 """Binary crossentropy between an output tensor and a target tensor.
 Arguments:
     target: A tensor with the same shape as `output`.
     output: A tensor.
     from_logits: Whether `output` is expected to be a logits tensor.
         By default, we consider that `output`
         encodes a probability distribution.
 Returns:
     A tensor.
 """
 # Note: nn.sigmoid_cross_entropy_with_logits
 # expects logits, Keras expects probabilities.
 if not from_logits:
   # transform back to logits
   epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype)
   output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_)
   output = math_ops.log(output / (1 - output))
 return nn.sigmoid_cross_entropy_with_logits(labels=target, logits=output)

可以看到源码中计算使用了nn.sigmoid_cross_entropy_with_logits,熟悉tensorflow的应该比较熟悉这个损失函数了,它可以用于简单的二分类,也可以用于多标签任务,而且应用广泛,在样本合理的情况下(如不存在类别不均衡等问题)的情况下,通常可以直接使用。

补充:keras自定义loss function的简单方法

首先看一下Keras中我们常用到的目标函数(如mse,mae等)是如何定义的


from keras import backend as K
def mean_squared_error(y_true, y_pred):
   return K.mean(K.square(y_pred - y_true), axis=-1)
def mean_absolute_error(y_true, y_pred):
   return K.mean(K.abs(y_pred - y_true), axis=-1)
def mean_absolute_percentage_error(y_true, y_pred):
   diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true), K.epsilon(), np.inf))
   return 100. * K.mean(diff, axis=-1)
def categorical_crossentropy(y_true, y_pred):
   '''Expects a binary class matrix instead of a vector of scalar classes.
   '''
   return K.categorical_crossentropy(y_pred, y_true)
def sparse_categorical_crossentropy(y_true, y_pred):
   '''expects an array of integer classes.
   Note: labels shape must have the same number of dimensions as output shape.
   If you get a shape error, add a length-1 dimension to labels.
   '''
   return K.sparse_categorical_crossentropy(y_pred, y_true)
def binary_crossentropy(y_true, y_pred):
   return K.mean(K.binary_crossentropy(y_pred, y_true), axis=-1)
def kullback_leibler_divergence(y_true, y_pred):
   y_true = K.clip(y_true, K.epsilon(), 1)
   y_pred = K.clip(y_pred, K.epsilon(), 1)
   return K.sum(y_true * K.log(y_true / y_pred), axis=-1)
def poisson(y_true, y_pred):
   return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)
def cosine_proximity(y_true, y_pred):
   y_true = K.l2_normalize(y_true, axis=-1)
   y_pred = K.l2_normalize(y_pred, axis=-1)
   return -K.mean(y_true * y_pred, axis=-1)

所以仿照以上的方法,可以自己定义特定任务的目标函数。比如:定义预测值与真实值的差


from keras import backend as K
def new_loss(y_true,y_pred):
   return K.mean((y_pred-y_true),axis = -1)

然后,应用你自己定义的目标函数进行编译


from keras import backend as K
def my_loss(y_true,y_pred):
   return K.mean((y_pred-y_true),axis = -1)
model.compile(optimizer=optimizers.RMSprop(lr),loss=my_loss,
metrics=['accuracy'])

来源:https://forskamse.blog.csdn.net/article/details/89426537

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com