Python3多线程爬虫实例讲解代码
作者:pythontab 发布时间:2021-01-10 21:45:28
多线程概述
多线程使得程序内部可以分出多个线程来做多件事情,充分利用CPU空闲时间,提升处理效率。python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补。并且在Python3中废弃了thread模块,保留了更强大的threading模块。
使用场景
在python的原始解释器CPython中存在着GIL(Global Interpreter Lock,全局解释器锁),因此在解释执行python代码时,会产生互斥锁来限制线程对共享资源的访问,直到解释器遇到I/O操作或者操作次数达到一定数目时才会释放GIL。所以,虽然CPython的线程库直接封装了系统的原生线程,但CPython整体作为一个进程,同一时间只会有一个获得GIL的线程在跑,其他线程则处于等待状态。这就造成了即使在多核CPU中,多线程也只是做着分时切换而已。
如果你的程序是CPU密集型,多个线程的代码很有可能是线性执行的。所以这种情况下多线程是鸡肋,效率可能还不如单线程因为有上下文切换开销。但是如果你的代码是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,多线程可以明显提高效率,例如多线程爬虫,多线程文件处理等等
多线程爬虫
多线程爬虫的代码实例
注: 以下代码在python3下运行通过, python2版本差异较大,不能运行成功,如需帮助请下方留意。
# coding=utf-8
import threading, queue, time, urllib
from urllib import request
baseUrl = 'http://www.pythontab.com/html/pythonjichu/'
urlQueue = queue.Queue()
for i in range(2, 10):
url = baseUrl + str(i) + '.html'
urlQueue.put(url)
#print(url)
def fetchUrl(urlQueue):
while True:
try:
#不阻塞的读取队列数据
url = urlQueue.get_nowait()
i = urlQueue.qsize()
except Exception as e:
break
print ('Current Thread Name %s, Url: %s ' % (threading.currentThread().name, url))
try:
response = urllib.request.urlopen(url)
responseCode = response.getcode()
except Exception as e:
continue
if responseCode == 200:
#抓取内容的数据处理可以放到这里
#为了突出效果, 设置延时
time.sleep(1)
if __name__ == '__main__':
startTime = time.time()
threads = []
# 可以调节线程数, 进而控制抓取速度
threadNum = 4
for i in range(0, threadNum):
t = threading.Thread(target=fetchUrl, args=(urlQueue,))
threads.append(t)
for t in threads:
t.start()
for t in threads:
#多线程多join的情况下,依次执行各线程的join方法, 这样可以确保主线程最后退出, 且各个线程间没有阻塞
t.join()
endTime = time.time()
print ('Done, Time cost: %s ' % (endTime - startTime))
运行结果:
1个线程时:
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/2.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/3.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/4.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/5.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/6.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/7.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/8.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/9.html
Done, Time cost: 8.182249069213867
2个线程时:
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/2.html
Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/3.html
Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/4.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/5.html
Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/6.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/7.html
Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/8.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/9.html
Done, Time cost: 4.0987958908081055
3个线程时:
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/2.html
Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/3.html
Current Thread Name Thread-3, Url: http://www.pythontab.com/html/pythonjichu/4.html
Current Thread Name Thread-4, Url: http://www.pythontab.com/html/pythonjichu/5.html
Current Thread Name Thread-2, Url: http://www.pythontab.com/html/pythonjichu/6.html
Current Thread Name Thread-4, Url: http://www.pythontab.com/html/pythonjichu/7.html
Current Thread Name Thread-1, Url: http://www.pythontab.com/html/pythonjichu/9.html
Current Thread Name Thread-3, Url: http://www.pythontab.com/html/pythonjichu/8.html
Done, Time cost: 2.287320137023926
通过调节线程数可以看到,执行时间会随着线程数的增加而缩短,抓取效率成正比增加。
总结:
Python多线程在IO密集型任务,多线程可以明显提高效率,CPU密集型任务不适合使用多线程处理。
来源:http://www.pythontab.com/html/2018/pythonhexinbiancheng_0103/1215.html


猜你喜欢
- Python Pandas聚合函数在前一节,我们重点介绍了窗口函数。我们知道,窗口函数可以与聚合函数一起使用,聚合函数指的是对一组数据求总和
- 前言MySQL 的权限表在数据库启动的时候就载入内存,当用户通过身份认证后,就在内存中进行相应权限的存取,这样,此用户就可以在数据库中做权限
- 在接触Go这么语言,可能你经常会听到这样一句话。对于字符串不能修改,可能你很纳闷,日常开发中我们对字符串进行修改也是很正常的,为什么又说Go
- 在Django model中对一张表的几个字段进行联合约束和联合索引,例如在购物车表中,登录的用户和商品两个字段在一起表示唯一记录。举个栗子
- J2ME是利用HttpConnection建立HTTP连接,然后获取数据,ASP也是利用HTTP协议,因而可以利用J2ME与ASP建立连接,
- 工作中常常会创建一个函数来解决一些需求问题,以下是个人在工作中总结出来的创建函数20种方式,你知道多少?function sayHello(
- salt分发后,主动将已完成的任务数据推送到redis中,使用redis的生产者模式,进行消息传送#coding=utf-8import f
- 一、网络请求在uni中可以调用uni.request方法进行请求网络请求需要注意的是:在小程序中网络相关的 API 在使用前需要配置域名白名
- 关于数据库的逻辑设计,是一个很广泛的问题。本文主要针对开发应用中遇到在MS SQL Server上进行表设计时,对表的主键设计应注意的问题以
- 本demo的效果是单选框一有a和b两个选项按钮,单选框二有q和w两个选项按钮,选中a,使得q不可选,w选中;选中b,使得w不可选,q选中下面
- 本文实例讲述了php中对象引用和复制。分享给大家供大家参考,具体如下:引用$tv2 = $tv1;或者$tv2 = &$tv1;以上
- 前言一首歌热门了,参与评论的人也很多,这时无论好坏评论都来了,没有人控评得话,指不定乱七八糟但是自己有喜欢看评论,不想影响好心情,想看看精彩
- 集合数据类型的添加操作在 “redis-py” 中也是通过 “sadd&
- 1、SQL SERVER 2005的性能工具中有SQL Server Profiler和数据库引擎优化顾问,极好的东东,必须熟练使用。 2、
- golang字符串比较的三种常见方法fmt.Println("go"=="go")fmt.Print
- 本文实例讲述了python连接字符串的方法。分享给大家供大家参考。具体如下:方法1:直接通过加号操作符相加foobar = 'foo
- 使用pycharm创建新项目,使用虚拟环境,但是进入到项目的cainiao_guoguo_health\venv\Scripts目录启动虚拟
- 视觉设计是什么,人们怎么认为它的,自己又是怎么对待和理解它,它的核心价值是什么。视觉设计,冒似很艺术,跟艺术相关的职业,给大多数人的印象是做
- 一、柱形图介绍(1)介绍柱状图(Histogram),也称条图(英文:bargraph)、长条图(英文:barchart)、条状图(Bar
- 1.安装PHP脚本运行环境yum install -y php php-mysql2.加载官方percona模板[root@cat /]#