网络编程
位置:首页>> 网络编程>> Python编程>> pytorch 可视化feature map的示例代码

pytorch 可视化feature map的示例代码

作者:牛丸4  发布时间:2021-10-21 13:35:49 

标签:pytorch,可视化,feature,map

之前做的一些项目中涉及到feature map 可视化的问题,一个层中feature map的数量往往就是当前层out_channels的值,我们可以通过以下代码可视化自己网络中某层的feature map,个人感觉可视化feature map对调参还是很有用的。

不多说了,直接看代码:


import torch
from torch.autograd import Variable
import torch.nn as nn
import pickle

from sys import path
path.append('/residual model path')
import residual_model
from residual_model import Residual_Model

model = Residual_Model()
model.load_state_dict(torch.load('./model.pkl'))

class myNet(nn.Module):
 def __init__(self,pretrained_model,layers):
   super(myNet,self).__init__()
   self.net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]])
   self.net2 = nn.Sequential(*list(pretrained_model.children())[:layers[1]])
   self.net3 = nn.Sequential(*list(pretrained_model.children())[:layers[2]])

def forward(self,x):
   out1 = self.net1(x)
   out2 = self.net(out1)
   out3 = self.net(out2)
   return out1,out2,out3

def get_features(pretrained_model, x, layers = [3, 4, 9]): ## get_features 其实很简单
'''
1.首先import model
2.将weights load 进model
3.熟悉model的每一层的位置,提前知道要输出feature map的网络层是处于网络的那一层
4.直接将test_x输入网络,*list(model.chidren())是用来提取网络的每一层的结构的。net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]]) ,就是第三层前的所有层。

'''
 net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]])
#  print net1
 out1 = net1(x)

net2 = nn.Sequential(*list(pretrained_model.children())[layers[0]:layers[1]])
#  print net2
 out2 = net2(out1)

#net3 = nn.Sequential(*list(pretrained_model.children())[layers[1]:layers[2]])
 #out3 = net3(out2)

return out1, out2
with open('test.pickle','rb') as f:
 data = pickle.load(f)
x = data['test_mains'][0]
x = Variable(torch.from_numpy(x)).view(1,1,128,1) ## test_x必须为Varibable
#x = Variable(torch.randn(1,1,128,1))
if torch.cuda.is_available():
 x = x.cuda() # 如果模型的训练是用cuda加速的话,输入的变量也必须是cuda加速的,两个必须是对应的,网络的参数weight都是用cuda加速的,不然会报错
 model = model.cuda()
output1,output2 = get_features(model,x)## model是训练好的model,前面已经import 进来了Residual model
print('output1.shape:',output1.shape)
print('output2.shape:',output2.shape)
#print('output3.shape:',output3.shape)
output_1 = torch.squeeze(output2,dim = 0)
output_1_arr = output_1.data.cpu().numpy() # 得到的cuda加速的输出不能直接转变成numpy格式的,当时根据报错的信息首先将变量转换为cpu的,然后转换为numpy的格式
output_1_arr = output_1_arr.reshape([output_1_arr.shape[0],output_1_arr.shape[1]])

来源:https://blog.csdn.net/baidu_36161077/article/details/81388221

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com