Python+OpenCV实现分水岭分割算法的示例代码
作者:求则得之,舍则失之 发布时间:2021-01-11 05:01:38
标签:Python,OpenCV,分水岭,分割
前言
分水岭算法是用于分割的经典算法,在提取图像中粘连或重叠的对象时特别有用,例如下图中的硬币。
使用传统的图像处理方法,如阈值和轮廓检测,我们将无法从图像中提取每一个硬币,但通过利用分水岭算法,我们能够检测和提取每一个硬币。
在使用分水岭算法时,我们必须从用户定义的标记开始。这些标记可以通过点击手动定义,或者我们可以使用阈值和/或形态学操作等方法自动或启发式定义它们。
基于这些标记,分水岭算法将输入图像中的像素视为地形——该方法通过“淹没”山谷,从标记开始向外移动,直到不同标记相遇。为了获得准确的分水岭分割,必须正确放置标记。
在这篇文章的剩下部分,我将向您展示如何使用分水岭算法来分割和提取图像中既粘连又重叠的对象。
为此,我们将使用各种 Python 包,包括 SciPy、scikit-image 和 OpenCV。
在上图中,您可以看到使用简单阈值和轮廓检测无法提取对象,由于这些对象是粘连的、重叠的或两者兼有,
因此简单的轮廓提取会将粘连的对象视为单个对象,而不是多个对象。
1.使用分水岭算法进行分割
# 打开一个新文件,将其命名为 watershed.py ,然后插入以下代码:
# 打开一个新文件,将其命名为 watershed.py ,然后插入以下代码:
# 导入必要的包
from skimage.feature import peak_local_max
from skimage.morphology import watershed
from scipy import ndimage
import numpy as np
import argparse
import imutils
import cv2
# 构造参数解析并解析参数
ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", default="HFOUG.jpg", help="path to input image")
ap.add_argument("-i", "--image", default="watershed_coins_01.jpg", help="path to input image")
args = vars(ap.parse_args())
# 加载图像并执行金字塔均值偏移滤波以辅助阈值化步骤
image = cv2.imread(args["image"])
shifted = cv2.pyrMeanShiftFiltering(image, 21, 51)
cv2.imshow("Input", image)
# 将图像转换为灰度,然后应用大津阈值
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("Thresh", thresh)
# 计算从每个二进制图像中的像素到最近的零像素的精确欧氏距离,然后找出这个距离图中的峰值
D = ndimage.distance_transform_edt(thresh)
# 可视化距离函数
D_show = cv2.normalize(D, None, 0, 1, cv2.NORM_MINMAX)
# print(np.max(D_show))
cv2.imshow("D_show", D_show)
# 以坐标列表(indices=True)或布尔掩码(indices=False)的形式查找图像中的峰值。峰值是2 * min_distance + 1区域内的局部最大值。
# (即峰值之间至少相隔min_distance)。此处我们将确保峰值之间至少有20像素的距离。
localMax = peak_local_max(D, indices=False, min_distance=20, labels=thresh)
# 可视化localMax
temp = localMax.astype(np.uint8)
cv2.imshow("localMax", temp * 255)
# 使用8-连通性对局部峰值进行连接成分分析,然后应用分水岭算法
# scipy.ndimage.label(input, structure=None, output=None)
# input :待标记的数组对象。输入中的任何非零值都被视为待标记对象,零值被视为背景。
# structure:定义要素连接的结构化元素。对于二维数组。默认是四连通, 此处选择8连通
#
markers = ndimage.label(localMax, structure=np.ones((3, 3)))[0] # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 可视化markers
temp_markers = markers.astype(np.uint8)
cv2.imshow("temp_markers", temp_markers * 20)
# 由于分水岭算法假设我们的标记代表距离图中的局部最小值(即山谷),因此我们取 D 的负值。
labels = watershed(-D, markers, mask=thresh)
print("[INFO] {} unique segments found".format(len(np.unique(labels)) - 1))
# 循环遍历分水岭算法返回的标签
for label in np.unique(labels):
# 0表示背景,忽略它
if label == 0:
continue
# 否则,为标签区域分配内存并将其绘制在掩码上
mask = np.zeros(gray.shape, dtype="uint8")
mask[labels == label] = 255
# 在mask中检测轮廓并抓取最大的一个
cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
# 在物体周围画一个圆
((x, y), r) = cv2.minEnclosingCircle(c)
cv2.circle(image, (int(x), int(y)), int(r), (0, 255, 0), 2)
cv2.putText(image, "#{}".format(label), (int(x) - 10, int(y)),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# 显示输出图像
cv2.imshow("Output", image)
cv2.waitKey(0)
2.Watershed与random walker分割对比
示例比较了两种分割方法,以分离两个相连的磁盘:分水岭算法和随机游走算法。 两种分割方法都需要种子,即明确属于某个区域的像素。在这里,到背景的距离图的局部最大值被用作种子。
import numpy as np
from skimage.segmentation import watershed
from skimage.feature import peak_local_max
from skimage import measure
from skimage.segmentation import random_walker
import matplotlib.pyplot as plt
from scipy import ndimage
# import cv2
# Generate an initial image with two overlapping circles
x, y = np.indices((80, 80))
x1, y1, x2, y2 = 28, 28, 44, 52
r1, r2 = 16, 20
mask_circle1 = (x - x1) ** 2 + (y - y1) ** 2 < r1 ** 2
mask_circle2 = (x - x2) ** 2 + (y - y2) ** 2 < r2 ** 2
image = np.logical_or(mask_circle1, mask_circle2)
# Now we want to separate the two objects in image
# Generate the markers as local maxima of the distance
# to the background
distance = ndimage.distance_transform_edt(image)
D_show = distance/np.max(distance)
# D_show = cv2.normalize(distance, None, 0, 1, cv2.NORM_MINMAX)
local_maxi = peak_local_max(
distance, indices=False, footprint=np.ones((3, 3)), labels=image)
markers = measure.label(local_maxi)
labels_ws = watershed(-distance, markers, mask=image)
markers[~image] = -1
labels_rw = random_walker(image, markers)
plt.figure(figsize=(12, 3.5))
plt.subplot(141)
plt.imshow(image, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.title('image')
plt.subplot(142)
plt.imshow(D_show, cmap='Spectral',interpolation='nearest')
plt.axis('off')
plt.title('distance map')
plt.subplot(143)
plt.imshow(labels_ws, cmap='Spectral', interpolation='nearest')
plt.axis('off')
plt.title('watershed segmentation')
plt.subplot(144)
plt.imshow(labels_rw, cmap='Spectral', interpolation='nearest')
plt.axis('off')
plt.title('random walker segmentation')
plt.tight_layout()
plt.show()
来源:https://blog.csdn.net/weixin_43229348/article/details/126038798


猜你喜欢
- go install编译并安装代码包,对于库,会生成目标库文件,并且放置到GOPATH/pgk目录下。对于可执文件,会生成目标可执行文件,并
- 一、前言上一篇中我们已经知道了客户端通过socket来连接服务端,进行了一次数据传输,那如何实现客户端多次发生数据?而服务端接受多个客户端呢
- 我们经常需要在数据库上建立有权限的用户,该用户只能去操作某个特定的数据库(比如该用户只能去读,去写等等),那么我们应该怎么在sqlserve
- package 的导入语法写 Go 代码的时经常用到 import 这个命令用来导入包,参考如下:import( "f
- 一、概述dba在工作中避不开的两个问题,sql使用绑定变量到底会有多少的性能提升?数据库的审计功能如果打开对数据库的性能会产生多大的影响?最
- 如下所示:1. 在PyCharm下安装pyinstaller2. 在Terminal下输入:“pyinstaller -F -w *.py”
- 有时,希望除去某些记录或更改它们的内容。DELETE 和 UPDATE 语句令我们能做到这一点。用update修改记录UPDATE tbl_
- 如果是自学,从零基础开端学习python的话,按照每个人理解能力的不同,大致上需求半年到一年半左右的时刻,当然,如果有其它编程言语的经历,入
- 本文实例为大家分享了python实现FTP文件下载功能的具体代码,供大家参考,具体内容如下代码:#-*-coding:utf-8-*- im
- 脚本架构:domain_test.py:批量解析运行主程序DomainResult.txt:域名解析结果文件domains.txt:解析的域
- 在MySQL中可以使用IF()、IFNULL()、NULLIF()、ISNULL()函数进行流程的控制。1、IF()函数的使用IF(expr
- 解读数据库的嵌套查询的性能explain 是非常重要的性能查询的工具!!!1、嵌套查询首先大家都知道我们一般不提倡嵌套查询或是join查询原
- CSS对浏览器的兼容性有时让人很头疼,或许当你了解当中的技巧跟原理,就会觉得也不是难事,从网上收集了IE7,6与Fireofx的兼容性处理技
- 一、torch.utils.data.DataLoader 简介作用:torch.utils.data.DataLoader 主要是对数据进
- 定义临时变量:{% with i=1 %}{{i}}{% endwith %}定义对临时变量操作的tag在templatetags中创建se
- 上一讲完成了基本博客的配置和项目工程的生成。这次开始将博客一些基本的操作主要是数据库方面学习。1.设计博客数据库表结构博客最主要的功能就是展
- 一、urllib 和 urllib2的关系在python2中,主要使用urllib和urllib2,而python3对urllib和urll
- 一、数据完整性简介1、数据完整性简介数据冗余是指数据库中存在一些重复的数据,数据完整性是指数据库中的数据能够正确反应实际情况。数据完整性是指
- Oracle :NvlNVL函数:NVL函数是将NULL值的字段转换成默认字段输出。NVL(expr1,expr2)expr1,需要转换的字
- 实例如下所示:# -*- coding:utf-8 -*- #os模块中包含很多操作文件和目录的函数 import os #获取目标文件夹的